Skip to main content
Log in

On instabilities in data assimilation algorithms

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

Data assimilation algorithms are a crucial part of operational systems in numerical weather prediction, hydrology and climate science, but are also important for dynamical reconstruction in medical applications and quality control for manufacturing processes. Usually, a variety of diverse measurement data are employed to determine the state of the atmosphere or to a wider system including land and oceans. Modern data assimilation systems use more and more remote sensing data, in particular radiances measured by satellites, radar data and integrated water vapor measurements via GPS/GNSS signals. The inversion of some of these measurements are ill-posed in the classical sense, i.e. the inverse of the operator H which maps the state onto the data is unbounded. In this case, the use of such data can lead to significant instabilities of data assimilation algorithms. The goal of this work is to provide a rigorous mathematical analysis of the instability of well-known data assimilation methods. Here, we will restrict our attention to particular linear systems, in which the instability can be explicitly analyzed. We investigate the three-dimensional variational assimilation and four-dimensional variational assimilation. A theory for the instability is developed using the classical theory of ill-posed problems in a Banach space framework. Further, we demonstrate by numerical examples that instabilities can and will occur, including an example from dynamic magnetic tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carrassi A., Ghil M., Trevisan A., Uboldi F.: Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction-assimilation system. Chaos: Interdiscip. J. Nonlinear Sci. 18(2), 023112 (2008)

    Article  MathSciNet  Google Scholar 

  • Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory, 2nd edn. Springer (1997)

  • Engl H.W.: On the choice of the regularization parameter for iterated tikhonov regularization of III-posed problems. J. Approx. Theory 49(1), 55–63 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Hauer K.-H., Kühn L., Potthast R.: On uniqueness and non-uniqueness for current reconstruction from magnetic fields. Inverse Probl. 21(3), 955–967 (2005)

    Article  MATH  Google Scholar 

  • Hauer K.-H., Potthast R.: Magnetic tomography for fuel cells—current status and problems. J. Phys. Conf. Ser. 73, 012008 (17 pp) (2007)

    Article  Google Scholar 

  • Hauer, K.-H., Potthast, R., Wannert, M.: Algorithms for magnetic tomography—on the role of a priori knowledge and constraints. Inverse Probl. 24(4), 045008 (2008). http://dx.doi.org/10.1088/0266-5611/24/4/045008

  • Hauer K.-H., Potthast R., Wüster T., Stolten D.: Magnetotomography—a new method for analysing fuel cell performance and quality. J. Power Sources 143(1–2), 67–74 (2005)

    Article  Google Scholar 

  • Jazwinski, A.H.: Stochastic processes and filtering theory. Academic Press (1970)

  • Kaipio, J., Somersalo, E.: Statistical and computational inverse problems (applied mathematical sciences), 1 edn. Springer (2004)

  • Kalman R.E.: A new approach to linear filtering and prediction problems. Trans. ASME—J. Basic Eng. 82(Series D), 35–45 (1960)

    Article  Google Scholar 

  • Kress R., Kühn L., Potthast R.: Reconstruction of a current distribution from its magnetic field. Inverse Probl. 18(4), 1127–1146 (2002)

    Article  MATH  Google Scholar 

  • Kress R.: Linear integral equations: v.82, vol. 82, 2nd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  • Lahoz W., Swinbank R., Khattatov B.: Data assimilation: making sense of observations. Springer, Berlin (2010)

    MATH  Google Scholar 

  • Lewis J.M., Lakshmivarahan S., Dhall S.: Dynamic data assimilation: a least squares approach. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  • Marx, B.A.: Dynamic magnetic tomography. Der Andere Verlag (2011)

  • Park, S.K., Xu, L.: Data assimilation for atmospheric, oceanic and hydrologic applications. Springer (2009)

  • Potthast R., Graben Pb.: Inverse problems in neural field theory. SIAM J. Appl. Dyn. Syst. 8(4), 1405–1433 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Potthast R., Kühn L.: On the convergence of the finite integration technique for the anisotropic boundary value problem of magnetic tomography. Math. Methods Appl. Sci. 26(9), 739–757 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Potthast, R., Moodey, A.J.F., Lawless, A.S., Jan van Leeuwen, P.: On error dynamics and instability in data assimilation. Preprint. http://www.reading.ac.uk/web/FILES/maths/preprint_12_05_Lawless.pdf

  • Potthast R., Wannert M.: Uniqueness of current reconstructions for magnetic tomography in multilayer devices. SIAM J. Appl. Math. 70(2), 563–578 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, A.R., Lermusiaux, P.F.J.: Overview of data assimilation. Harvard reports in physical/interdisciplinary (ocean sciences), The Division of Engineering and Applied Sciences Harvard University, Cambridge (2000)

  • Wannert, M.: Stabile Algorithmen für die Magnetotomographie an Brennstoffzellen. PhD thesis, Universität Göttingen (2009)

  • Warner T.T.: Numerical weather and climate prediction. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland W. E. Potthast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marx, B.A., Potthast, R.W.E. On instabilities in data assimilation algorithms. Int J Geomath 3, 253–278 (2012). https://doi.org/10.1007/s13137-012-0034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-012-0034-5

Keywords

Mathematics Subject Classification

Navigation