Skip to main content
Log in

The impact of mean dynamic topography on a sea-level anomaly assimilation in the South China Sea based on an eddy-resolving model

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The sea-level anomaly (SLA) from a satellite altimeter has a high accuracy and can be used to improve ocean state estimation by assimilation techniques. However, the lack of an accurate mean dynamic topography (MDT) is still a bothersome issue in an ocean data assimilation. The previous studies showed that the errors in MDT have significant impacts on assimilation results, especially on the time-mean components of ocean states and on the time variant parts of states via nonlinear ocean dynamics. The temporal-spatial differences of three MDTs and their impacts on the SLA analysis are focused on in the South China Sea (SCS). The theoretical analysis shows that even for linear models, the errors in MDT have impacts on the SLA analysis using a sequential data assimilation scheme. Assimilation experiments, based on EnOI scheme and HYCOM, with three MDTs from July 2003 to June 2004 also show that the SLA assimilation is very sensitive to the choice of different MDTs in the SCS with obvious differences between the experimental results and observations in the centre of the SCS and in the vicinity of the Philippine Islands. A new MDT for assimilation of SLA data in the SCS was proposed. The results from the assimilation experiment with this new MDT show a marked reduction (increase) in the RMSEs (correlation coefficient) between the experimental and observed SLA. Furthermore, the subsurface temperature field is also improved with this new MDT in the SCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bingham R J, Haines K. 2006. Mean dynamic topography: inter-comparisons and errors. Phil Trans R Soc: Series A, 364(1841): 903–916

    Article  Google Scholar 

  • Birol F, Brankart J, Castruccio F, et al. 2004. Impact of ocean mean dynamic topography on satellite data assimilation. Mar Geod, 27(1–2): 59–78

    Article  Google Scholar 

  • Blayo E, Verron J, Molines J M. 1994. Assimilation of TOPEX/POSEIDON altimeter data into a circulation model of the North Atlantic. J Geophys Res, 99(C12): 24691–24705

    Article  Google Scholar 

  • Bleck R. 2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model, 37: 55–88

    Article  Google Scholar 

  • Carnes M R, Mitchell J L, DeWitt P W. 1990. Synthetic temperature profiles derived from geosat altimetry: comparison with air-dropped expendable bathythermograph profiles. J Geophys Res, 95: 17979–17992

    Article  Google Scholar 

  • Castruccio F, Verron J, Gourdeau L, et al. 2008. Joint altimetric and in-situ data assimilation using the GRACE mean dynamic topography: a 1993–1998 hindcast experiment in the tropical Pacific Ocean. Ocean Dyn, 58(1): 43–63

    Article  Google Scholar 

  • Chassignet E P, Hurlburt H E, Metzger E J, et al. 2009. U.S. GODAE: global ocean prediction with the HYbrid coordinate ocean model (HYCOM). Oceanography, 22: 64–75

    Article  Google Scholar 

  • Chassignet E P, Smith L T, Halliwell G R, et al. 2003. North Atlantic simulations with the hybrid coordinate ocean model (HYCOM): impact of the vertical coordinate choice, reference pressure, and thermobaricity. J Phys Oceanogr, 33(12): 2504–2526

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Prog Oceanogr, 91(2): 167–216

    Article  Google Scholar 

  • Chen Gengxin, Hou Yijun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure. J Geophys Res, 116: C06018, doi:06010.01029/02010JC006716

    Article  Google Scholar 

  • Chen Gengxin, Hu Po, Hou Yijun, et al. 2011. Intrusion of the Kuroshio into the South China Sea, in September 2008. J Oceanogr, doi: 10.1007/s10872-011-0047-y

  • Cheney R, Miller L, Agreen R, et al. 1994. TOPEX/POSEIDON: the 2-cm solution. J Geophys Res, 94: 4737–4748

    Article  Google Scholar 

  • Cheng Xuhua, Qi Yiquan. 2007. Trends of sea level variations in the South China Sea from merged altimetry data. Global and Planetary Change, 57(3–4): 371–382

    Article  Google Scholar 

  • Chu Peter C, Li Rongfeng. 2000. South China Sea isopycnal surface circulations. J Phys Oceanogr, 30: 2419–2438

    Article  Google Scholar 

  • Counillon F, Bertino L. 2009. High resolution ensemble forecasting for the Gulf of Mexico eddies and fronts. Ocean Dyn, 59(1): 83–95

    Article  Google Scholar 

  • Dobricic S. 2005. New mean dynamic topography of the Mediterranean calculated from assimilation system diagnostics. Geophys Res Lett, 32: L11606, doi:11610.11029/12005GL022518

    Article  Google Scholar 

  • Ducet N, LeTraon P Y, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J Geophys Res, 105(C8): 19477–19498

    Article  Google Scholar 

  • Evensen G. 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn, 53: 343–367

    Article  Google Scholar 

  • Fu Lee-Lueng, Cazenave A. 2001. Satellite altimetry and earth sciences: a handbook of techniques and applications. International Geophisics Series. San Diego: Academic, 69

    Google Scholar 

  • Fu Weiwei, Zhu Jiang, Yan Changxiang, et al. 2009. Toward a global ocean data assimilation system based on ensemble optimum interpolation: altimetry data assimilation experiment. Ocean Dyn, 59(4): 587–602

    Article  Google Scholar 

  • Gan Jianping, Li H, Curchitser E N, et al. 2006. Modeling South China Sea circulation: response to seasonal forcing regimes. J Geophys Res, 111: C06034, doi:06010.01029/02005JC003298

    Article  Google Scholar 

  • Haines K, Johannesson J, Knudsen P, et al. 2010. An ocean modelling and assimilation guide to using GOCE geoid products. Ocean Sci Dis, 7(6): 1849–1887

    Article  Google Scholar 

  • Halliwell G. 2004. Evaluation of vertical coordinate and vertical mixing algorithms in the hybrid-coordinate ocean model (HYCOM). Ocean Model, 7(3–4): 285–322

    Article  Google Scholar 

  • Han Guijun, Li Wei, Zhang Xuefeng, et al. 2011. A regional ocean reanalysis system for coastal waters of China and adjacent seas. Adv Atmos Sci, 28(3): 682–690

    Article  Google Scholar 

  • Hernandez F, Schaeffer P. 2001. The CLS01 Mean Sea Surface: A validation with the GSFC00.1 Surface, Report. Édité par CLS, Ramonville St Agne, France, 1

    Google Scholar 

  • Ho Chung-Ru, Zheng Quanan, Soong Yin S, et al. 2000. Seasonal variability of sea surface height in the South China Sea observed with TOPEX/Poseidon altimeter data. J Geophys Res, 105(C6): 13981–13990

    Article  Google Scholar 

  • Hurlburt H E. 1984. The potential for ocean prediction and the role of altimeter data. Mar Geod, 8(1–4): 17–66

    Article  Google Scholar 

  • Hwang Cheinway, Chen Sung-An. 2000. Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry. J Geophys Res, 105(C10): 23943–23965, doi:23910.21029/22000JC900092

    Article  Google Scholar 

  • Jayne S R. 2006. Circulation of the North Atlantic Ocean from altimetry and the gravity recovery and climate experiment geoid. J Geophys Res, 111: C03005, doi:03010.01029/02005JC003128

    Article  Google Scholar 

  • Jia Yinglai, Liu Qinyu. 2004. Eddy shedding from the Kuroshio bend at Luzon Strait. J Oceanogr, 60: 1063–1069, doi:1010.1007/s10872-10005-10014-10876

    Article  Google Scholar 

  • Jia Yinglai, Liu Qinyu, Liu Wei. 2005. Primary study of the mechanism of eddy shedding from the Kuroshio bend in Luzon Strait. J Oceanogr, 61: 1017–1027

    Article  Google Scholar 

  • Johnson D R, Boyer T P, Garcia H E, et al. 2009. World Ocean Database 2009 Documentation. Levitus, S ed. NODC Internal Report 20. NOAA Printing Office, Silver Spring, MD. 175

    Google Scholar 

  • Large W G, Danabasoglu G, Doney S C, et al. 1997. Sensitivity to surface forcing and boundary layer mixing in a global ocean model: annual-mean climatology. J Phy Oceanogr, 27: 2418–2447

    Article  Google Scholar 

  • Large W G, McWilliams J C, Doney S C. 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys, 32(4): 363–403

    Article  Google Scholar 

  • Lea D, Drecourt J, Haines K. 2008. Ocean altimeter assimilation with observationaland modelbias correction. Q J Roy Meteor Soc, 134: 1761–1774

    Article  Google Scholar 

  • LeTraon P Y, Ogor F. 1998. ERS orbit improvement using TOPEX/Poseidon: the 2 cm challange. J Geophys Res, 103: 8045–8057

    Article  Google Scholar 

  • LeTraon P Y, Rouquet M C, Boissier C. 1990. Spatial scales of mesoscale variability in the North Atlantic as deduced from Geosat data. J Geophys Res, 95(C11): 20267–20285

    Article  Google Scholar 

  • Levitus S, Boyer T P. 1994. World Ocean Atlas 1994: vol. 4. Temperature. NOAA Atlas NESDIS 4, US Government Printing Office, Washington, D C. 117

    Google Scholar 

  • Levitus S, Burgett R, Boyer T. 1994. World Ocean Atlas 1994: vol. 3. Salinity. NOAA Atlas NESDIS 3, US Government Printing Office, Washington, D C. 99

    Google Scholar 

  • Lewis J M, Lakshmivarahan S, Dhall S. 2006. Dynamic data assimilation: a least squares approach. Encyclopedia of Mathematics and Its Applications (104). Venice Cambridge University Press, 333–358

  • Li Xichen, Zhu Jiang, Xiao Yiguo, et al. 2010. A modelbased observation-thinning scheme for assimilation of high resolution SST in the shelf and coastal seas around China. J Atmos Oceanic Technol, 27: 1044–1058

    Article  Google Scholar 

  • Liu Qinyu, Jia Yinglai, Wang Xiaohua, et al. 2001. On the annual cycle characteristics of the sea surface height in the South China Sea. Adv Atmos Sci, 18: 613–622

    Article  Google Scholar 

  • Maximenko N A, Niiler P P. 2005. Hybrid decade-mean global sea level with mesoscale resolution. In: Saxena N K, ed. Recent Advances in Marine Science and Technology 2004. PACON International, Honolulu, Hawaii, 55–59

    Google Scholar 

  • Mercier H. 1986. Determining the general circulation of the ocean: A non-linear inverse problem. J Geophys Res, 91: 5103–5109

    Article  Google Scholar 

  • Mitchell J L, Dastugue J M, Teague W J. 1990. The estimation of geoid profiles in the northwest Atlantic from simultaneous satellite altimetry and airborne expendable bathythermograph sections. J Geophys Res, 95: 17965–17977

    Article  Google Scholar 

  • Oke P R, Allen J S, Miller R N, et al. 2002. Assimilation of surface velocity data into a primitive equation coastal ocean model. J Geophys Res, 107: 3122. doi:3110.1029/2000JC000511

    Article  Google Scholar 

  • Oke P R, Schiller A, Griffin D A, et al. 2005. Ensemble data assimilation for an eddy-resolving ocean model of the Australian region. Quart J Roy Meteor Soc, 131(613): 3301–3311

    Article  Google Scholar 

  • Oschlies A, Willebrand J. 1996. Assimilation of Geosat altimeter data into an eddy-resolving primitive equation model of the North Atlantic Ocean. J Geophys Res, 101: 14175–14190

    Article  Google Scholar 

  • Parent L, Testut C-E, Brankart J-M, et al. 2003. Comparative assimilation of Topex/Poseidon and ERS altimeter data and of TAO temperature data in the tropical Pacific Ocean during 1994-1998, and the mean sea-surface height issue. J Marine Sys, 40–41: 381–401

    Article  Google Scholar 

  • Qiu Bo. 2001. Kuroshio and Oyashio Currents, Encyclopedia of Ocean Science. New york: Academic Press, 1413–1425

    Google Scholar 

  • Reynolds R W, Smith T M, Liu Chunying, et al. 2007. Daily high-resolution-blended Analyses for sea surface temperature. J Climate, 20(22): 5473–5496

    Article  Google Scholar 

  • Rio M-H, Hernandez F. 2004. A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J Geophys Res, 109(C12032): doi:12010.11029/12003JC002226

  • Rio M-H, Schaeffer P, Moreaux G, et al. 2009. A New Mean Dynamic Topography Computed over the Global Ocean from GRACE Data, Altimetry and Insitu Measurements. Paper presented at OceanObs09 Symposium, IOC/UNESCO and European Space Agency, Venice, Italy

  • Segschneider J, Anderson D L T, Stockdale T N. 2000. Towards the use of altimetry for operational seasonal forecasting. J Climate, 13: 3115–3138

    Article  Google Scholar 

  • Shaw Ping-Tung, Chao Shenn-Yu, Fu Lee-Lueng. 1999. Sea surface height variations in the South China Sea from satellite altimetry. Oceanol Acta, 22(1): 1–17

    Article  Google Scholar 

  • Smedstad O M, Hurlburt H E, Metzger E J. 2003. An operational eddy resolving 1/16circ global ocean nowcast/forecast system. J Marine Sys, 40–41: 341–361

    Article  Google Scholar 

  • Shu Yeqiang, Zhu Jiang, Wang Dongxiao, et al. 2009. Performance of four sea surface temperature assimilation schemes in the South China Sea. Cont Shelf Res, 29(11–12): 1489–1501

    Article  Google Scholar 

  • Stammer D. 1997. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J Phys Oceanogr, 27(8): 1743–1769

    Article  Google Scholar 

  • Storto A, Dobricic S, Masina S, et al. 2011. Assimilating along-track altimetric observations through local hydrostatic adjustment in a global ocean variational assimilation system. Mon Wea Rev, 139: 738–754

    Article  Google Scholar 

  • Su Jilan, Guan Bingxian, Jiang Jingzhong. 1990. The Kuroshio. Part I. Physical features. Oceanogr Mar Biol Ann Rev, 28: 11–71

    Google Scholar 

  • Sverdrup H U, Johnson M W, Fleming R H. 1942. The Oceans Their Physics, Chemistry, and General Biology. New York Prentice-Hall, 1087

  • Vianna M L, Menezes V V. 2010. Mean mesoscale global ocean currents from geodetic pre-GOCE MDTs with a synthesis of the North Pacific circulation. J Geophys Res, 115: 1–17

    Google Scholar 

  • Vidard A, Balmaseda M, Anderson D. 2009. Assimilation of altimeter data in the ECMWF ocean analysis system 3. Mon Wea Rev, 137: 1393–1408

    Article  Google Scholar 

  • Wang Guihua, Su Jilan, Chu Peter C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophy Res Lett, 30(21): 2121, doi:2110.1029/2003GL018532

    Article  Google Scholar 

  • Wang Liping, Koblinsky C J, Howden S. 2000. Mesoscale variability in the South China Sea from the TOPEX/Poseidon altimetry data. Deep-Sea Res Part I, 47: 681–708

    Article  Google Scholar 

  • Wang Dongxiao, Xu Hongzhou, Lin Jing, et al. 2008. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. J Oceanogr, 64: 925–935, doi:910.1007/s10872-10008-10076-10873

    Article  Google Scholar 

  • White W B, Tai C K, Holland W R. 1990. Continuous assimilation of simulated GEOSAT altimetric sea level into an eddy resolving numerical ocean model: Part I. Referenced sea differences. J Geophys Res, 95: 3219–3234

    Article  Google Scholar 

  • Wunsch C. 1978. The North Atlantic general circulation west of 50circW determined by inverse methods. Rev Geophys, 16: 538–620

    Article  Google Scholar 

  • Wunsch C, Stammer D. 1995. The global frequencywavenumber spectrum of oceanic variability estimated from TOPEX/POSEIDON altimetric measurements. J Geophys Res, 100(C12): 24895–24910

    Article  Google Scholar 

  • Wyrtki K. 1961. Physical Oceanography of the Southeast Asia Waters. Scientific results of maritime investigations of the south china sea and gulf of Thailand 1959–1961, NAGA Report, 2, scripps institution of oceanography, University of California, San Diego, La Jolla, 195

    Google Scholar 

  • Xiao Xianjun, Wang Dongxiao, Yan Changxian, et al. 2007. The verification of a three dimension variation data assimilation system in the South China Sea. Prog Nat Sci (in Chinese), 17: 353–361

    Google Scholar 

  • Xiao Yiguo, Zhu Jiang. 2007. Numerical simulation of circulations in coastal and shelf sea around China using a Hybrid Coordinate Ocean Model. Technical Report, Institute of Atmospheric Physics, Chinese Academic of Science (in Chinese)

  • Xie Jiping, Counillon F, Zhu Jiang, et al. 2011. An eddy resolving tidal-driven model of the South China Sea assimilating along-track SLA data using the EnOI. Ocean Sci, 7: 609–627

    Article  Google Scholar 

  • Xu Dazhi, Li Xichen, Zhu Jiang, et al. 2011. Evaluation of an ocean data assimilation system in the marginal seas around China, with a focus on the South China Sea. Chinese Journal of Oceanology and Limnology, 29(2): 414–426

    Article  Google Scholar 

  • Yin Xunqiang, Qiao Fangli, Xia Changshui, et al. 2010. Reconstruction of eddies by assimilating satellite altimeter data into Princeton ocean model. Acta Oceanolo Sin, 29(1): 1–11

    Article  Google Scholar 

  • Zheng Fei, Zhu Jiang, Zhang Rong-Hua. 2007. Impact of altimetry data on ENSO ensemble initializations and predictions. Geophy Res Lett, 34(13): L13611, doi:13610.11029/12007GL030451

    Article  Google Scholar 

  • Zhu Jiang. 2011. Overview of Regional and Coastal Systems, Chapter 17. In: Schiller A, Brassingtcu G B, eds. Operational Oceanography in the 21st Century. Springer Science +Business Media B V, 413–439

  • Zhu Jiang, Awaji T, Brassington G B, et al. 2008. Asia and oceania applications. In: K. Wilmer-Becker Ed. Proceedings of the Final GODAE Symposium, The Met Office, Exeter, UK, 359–372

  • Zhuang Wei, Xie Shang-Ping, Wang Dongxiao, et al. 2010. Intraseasonal variability in sea surface height over the South China Sea. J Geophys Res, 115(C04010): doi:10.1029/2009JC005647

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Zhu.

Additional information

Foundation item: The National Basic Research Program of China under contract Nos 2012CB417404 and 2011CB403504; the National Natural Science Foundation of China under contract No. 41075064; and the National High Technology Research and Development Program of China under contract No. 2008AA09A404-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D., Zhu, J., Qi, Y. et al. The impact of mean dynamic topography on a sea-level anomaly assimilation in the South China Sea based on an eddy-resolving model. Acta Oceanol. Sin. 31, 11–25 (2012). https://doi.org/10.1007/s13131-012-0232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-012-0232-x

Key words

Navigation