Skip to main content
Log in

The structure of the muscular and nervous systems of the female Intoshia linei (Orthonectida)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The systematic position of the Orthonectida remains enigmatic. According to a classical point of view, they are placed together with Dicyemida in the phylum Mesozoa. Traditionally, orthonectids are regarded as rather primitive organisms, lacking digestive, muscular, and nervous systems. Here, using confocal laser scanning microscopy (CLSM) and immunohistochemical methods, we describe the musculature and serotoninergic nervous system of female adults of Intoshia linei (Orthonectida). The whole muscular system consists of 4 longitudinal and 9–11 circular muscle cells. The general muscular topography corresponds to the typical pattern for small-sized annelids or flatworms. Immunohistochemistry reveals six serotonin-like cells, which form part of a small nervous system comprising only 10–12 total cells based on nuclear counts. This is the first finding of a serotoninergic nervous system in orthonectids. Our analysis of muscular and neural organization in Orthonectida reveals significant differences from Diciemyda and aligns it more closely with the Lophotrochozoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achatz, J. G., & Martinez, P. (2012). The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications. Frontiers in Zoology, 9, 27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brinkmann, N., & Wanninger, A. (2008). Larval neurogenesis in Sabellaria alveolata reveals plasticity in polychaete neural patterning. Evolution and Developement, 10(5), 606–618.

    Article  Google Scholar 

  • Caullery, M. (1961). Classe des Orthonectides (Orthonectida Giard 1877). In: Grassé PP (ed) Traité de Zoologie. pp 695–706.

  • Caullery, M., & Mesnil, F. (1901). Recherches sur les Orthonectides. Archives d'anatomie microscopique et de morphologie expérimentale, 4, 381–470.

    Google Scholar 

  • Giard, A. (1877). Sur les Orthonectida, classe nouvelle d’animaux parasites des Echinodermes et des Turbellariés. Comptes Rendus des Séances l’Académie des Sciences, 85, 812–814.

    Google Scholar 

  • Giard, A. (1879). On the organization and classification of the Orthonectida. Annals and Magazine of Natural History, 5 Series, 4, 471–473.

    Google Scholar 

  • Hamlet, B., Van Schyndel, D., Adema, C. M., Lewis, L. A., & Locker, E. S. (1996). The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis. Molecular biology and evolution, 13, 1187–1191.

    Article  Google Scholar 

  • Hartmann, D.W. (1925). Mesozoa. In: Handbuch der Zoologie, Bd 1. pp 996–1014.

  • Hatschek, B. (1888). Lehrbuch der Zoologie. 1. Lieferung. Gustav Fischer, Jena.

  • Helm, C., Schemel, S., & Blendorn, C. (2013). Temporal plasticity in annelid development—ontogeny of Phyllodoce groenlandica (Phyllodocidae, Annelida) reveals heterochronous patterns. Journal of Experemental Zoology, 320B, 166–178.

    Article  Google Scholar 

  • Hindinger, S., Schwaha, T., & Wanninger, A. (2013). Immunocytochemical studies reveal novel neural structures in nemertean pilidium larvae and provide evidence for incorporation of larval components into the juvenile nervous system. Frontiers in Zoology, 10, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooge, M. D. (2001). Evolution of body-wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). Journal of Morphology, 249, 171–194.

    Article  CAS  PubMed  Google Scholar 

  • Kotikova, E. A., Raikova, O. I., Reuter, M., & Gustafsson, M. K. S. (2002). The nervous and muscular systems in the free-living flatworm Castrella truncata (Rhabdocoela): an immunocytochemical and phalloidin fluorescence study. Tissue & Cell, 34, 365–374.

    Article  CAS  Google Scholar 

  • Kozloff, E. N. (1971). Morphology of the orthonectid Ciliocincta sabellariae. Journal of Parasitoogy, 57, 377–406.

    Google Scholar 

  • Kozloff, E. N. (1969). Morphology of the orthonectid Rhopalura ophiocomae. Journal of Parasitoogy, 55, 171–195.

    Article  Google Scholar 

  • Metschnikoff, E. (1881). Untersuchungen uber Orthonectiden. Zeitschrift für wissenschaftliche Zoologie, 35, 282–303.

    Google Scholar 

  • Metschnikoff, E. (1879). Nachtragliche Bemerkungen uber Orthonectiden. Zoologischer Anzeiger, 2, 618–620.

    Google Scholar 

  • Müller, M. C. M. (2006). Polychaete nervous systems: ground pattern and variations—cLS microscopy and the importance of novel characteristics in phylogenetic analysis. Integrative and Comparative Biology, 46, 125–133. doi:10.1093/icb/icj017.

    Article  PubMed  Google Scholar 

  • Müller, M. C. M., & Westheide, W. (2002). Comparative analysis of the nervous systems in presumptive progenetic dinophilid and dorvilleid polychaetes (Annelida) by immunohistochemistry and cLSM. Acta Zoologica, 83, 33–48. doi:10.1046/j.1463-6395.2002.00096.x.

    Article  Google Scholar 

  • Müller, M. C. M., & Worsaae, K. (2006). CLSM analysis of the phalloidin-stained muscle system in Nerilla antennata, Nerillidium sp. and Trochonerilla mobilis (Polychaeta; Nerillidae). Journal of Morphology, 267, 885–896. doi:10.1002/jmor.10292.

    Article  PubMed  Google Scholar 

  • Müller, M. C. M., & Sterrer, W. (2004). Musculature and nervous system of Gnathostomula peregrina (Gnathostomulida) shown by phalloidin labeling, immunohistochemistry, and cLSM, and their phylogenetic significance. Zoomorphology, 123, 169–177. doi:10.1007/s00435-004-0099-2.

    Google Scholar 

  • Neves, R. C., Sørensen, K. J. K., Kristensen, R. M., & Wanninger. (2009). Cycliophoran dwarf males break the rule: high complexity with low cell numbers. The Biological Bulletin, 217(1), 2–5.

    PubMed  Google Scholar 

  • Neves, R. C., Kristensen, R. M., & Funch, P. (2012). Ultrastructure and morphology of the cycliophoran female. Journal of Morphology, 273, 850–869.

    Article  PubMed  Google Scholar 

  • Orrhage, L., & Müller, M. C. M. (2005). Morphology of the nervous system of Polychaeta (Annelida). Hydrobiologia, 535–536, 79–111. doi:10.1007/s10750-004-4375-4.

    Google Scholar 

  • Pawlowski, J., Montoya-Burgos, J.-I., Fahrni, J. F., Wuest, J., & Zaninetti, L. (1996). Origin of the Mesozoa inferred from 18S rRNA gene sequences. Molecular biology and evolution, 13, 1128–1132.

    Article  CAS  PubMed  Google Scholar 

  • Petrov, N. B., Aleshin, V. V., Pegova, A. N., Ofitserov, M. V., & Slyusarev, G. S. (2010). New insight into the phylogeny of Mesozoa: evidence from the 18s and 28S RRNA Genes. Moscow University Biological Sciences Bulletin, 65, 168–170.

    Article  Google Scholar 

  • Purschke, G., & Müller, M. C. M. (2006). Evolution of body wall musculature. Integrative and Comparative Biology, 46, 497–507. doi:10.1093/icb/icj053.

    Article  CAS  PubMed  Google Scholar 

  • Rawlinson, K. A. (2010). Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits. Frontiers in Zoology. doi:10.1186/1742-9994-7-12.

    PubMed  PubMed Central  Google Scholar 

  • Reuter, M., Mäntylä, K., & Gustafsson, M. K. S. (1998). Organization of the orthogon—main and minor nerve cords. Hydrobiologia, 383, 175–182.

    Article  Google Scholar 

  • Reuter, M., Raikova, O. I., Jondelius, U., Gustafsson, M. K. S., Maule, A. G., & Halton, D. W. (2001). Organisation of the nervous system in the Acoela: an immunocytolochemical study. Tissue Cell, 33(2), 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Rothe, B. H., & Schmidt-Rhaesa, A. (2009). Architecture of the nervous system in two Dactylopodola species (Gastrotricha, Macrodasyida). Zoomorphology, 128, 227–246.

    Article  Google Scholar 

  • Rothe, B. H., Schmidt-Rhaesa, A., & Kieneke, A. (2011). The nervous system of Neodasys chaetonotoideus (Gastrotricha: Neodasys) revealed by combining confocal laserscanning and transmission electron microscopy: evolutionary comparison of neuroanatomy within the Gastrotricha and basal Protostomia. Zoomorphology, 130, 51–84.

    Article  Google Scholar 

  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9, 676–682. doi:10.1038/nmeth.2019.

    Article  CAS  PubMed  Google Scholar 

  • Slyusarev, G. S. (1994). The fine structure of the female Intoshia variabili (Alexandrov & Sljusarev) (Mesozoa: Orthonectida). Acta Zoologica, 75, 311–321.

    Article  Google Scholar 

  • Slyusarev, G. S. (2003). The fine structure the muscle system in the female of the orthonectid Intoshia variabili (Orthonectida). Acta Zoologica, 84, 107–111.

    Article  Google Scholar 

  • Slyusarev, G. S. (2000). Fine structure and development of the cuticle of Intoshia variabili (Orthonectida). Acta Zoologica, 81, 1–8.

    Article  Google Scholar 

  • Slyusarev, G. S., & Manylov, O. G. (2001). General morphology of muscle system in the female orthonectid, Intoshia variabili (Orthonectida). Cahiers de Biologie Marine, 42, 239–242.

    Google Scholar 

  • Slyusarev, G. S., & Kristensen, R. M. (2003). Fine structure of the ciliated cells and ciliary rootlets of Intoshia variabili (Orthonectida). Zoomorphology, 122, 33–39.

    Google Scholar 

  • Stunkard, H. W. (1954). The life-history and systematic relations of the Mesozoa. Quarterly Review of Biology, 29, 230–244.

    Article  CAS  PubMed  Google Scholar 

  • Tekle, Y. I., Raikova, O. I., Ahmadzadeh, A., & Jondelius, U. (2005). Revision of the Childiidae (Acoela), a total evidence approach in reconstructing the phylogeny of acoels with reversed muscle layers. Journal of Zoological Systematics and Evolutionary Research, 43, 72–90.

    Article  Google Scholar 

  • Tyler, S., & Hooge, M. (2004). Comparative morphology of the body wall in flatworms (Platyhelminthes). Canadian Journal of Zoology, 82, 194–210.

    Article  Google Scholar 

  • Tyler, S., & Hyra, G. S. (1998). Patterns of musculature as taxonomic characters for the Turbellaria Acoela. Hydrobiologia, 383, 51–59.

    Article  Google Scholar 

  • Tzetlin, A. B., & Filippova, A. V. (2005). Muscular system in polychaetes (Annelida). Hydrobiologia, 535–536, 113–126. doi:10.1007/s10750-004-1409-x.

    Google Scholar 

  • Tzetlin, A. B., Zhadan, A., Ivanov, I., Müller, M. C. M., & Purschke, G. (2002). On the absence of circular muscle elements in the body wall of Dysponetus pygmaeus (Chrysopetalidae, “Polychaeta”, Annelida). Acta Zoologica, 83, 81–85. doi:10.1046/j.1463-6395.2002.00104.x.

    Article  Google Scholar 

  • Wanninger, A. (2005). Immunocytochemistry of the nervous system and the musculature of the chordoid larva of Symbion pandora (Cycliophora). Journal of Morphology, 265, 237–243.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was performed at the Core Facility Centers for Microscopy and Microanalysis, Center for molecular and cell technologies, center “CHROMAS” and center “Culture Collection of Microorganisms” of St-Petersburg State University. The main financial support for this study was provided by grant of Russian Foundation for Basic Research (RFBR) №13-04-00725. The work was partially supported by the Saint-Petersburg State University research grant 1.50.1619.2013 to Viktor Starunov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Slyusarev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slyusarev, G.S., Starunov, V.V. The structure of the muscular and nervous systems of the female Intoshia linei (Orthonectida). Org Divers Evol 16, 65–71 (2016). https://doi.org/10.1007/s13127-015-0246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0246-2

Keywords

Navigation