Skip to main content
Log in

Liver delipidating effect of a combination of resveratrol and quercetin in rats fed an obesogenic diet

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Liver steatosis is characterized by an abnormal accumulation of triacylglycerols in this organ. This metabolic disorder is closely associated with obesity. In the present study, we aimed to analyse the effect of a combination of resveratrol and quercetin on liver steatosis in an animal model of dietetic obesity, and to compare it with one induced by the administration of each polyphenol separately. Rats were divided into four dietary groups of nine animals each and fed a high-fat, high-sucrose diet: an untreated control group and three groups treated either with resveratrol (RSV; 15 mg/kg/day), with quercetin (Q; 30 mg/kg/day), or with both (RSV + Q; 15 mg resveratrol/kg/day and 30 mg quercetin/kg/day) for 6 weeks. Liver weight and triacylglycerol content decreased only in the RSV + Q group. A significant reduction in acetyl-CoA carboxylase activity was observed in RSV and RSV + Q groups, without changes in fatty acid synthase activity. A significant increase in carnitine palmitoyltransferase-1a activity was observed only in rats treated with the combination of resveratrol and quercetin, suggesting increased fatty acid oxidation. Citrate synthase, a marker of mitochondrial density, remained unchanged in all groups. No significant changes were observed in the expression of peroxisome proliferator-activated receptor α (PPARα), nuclear respiratory factor 1 (NRF-1) and transcription factor A mitochondrial (TFAM). In conclusion, resveratrol and quercetin together, combining two doses which were shown to be ineffective singly, is an interesting tool to prevent liver steatosis associated with high-fat high-sucrose feeding. The delipidating effect seems to be mediated by increased fatty acid oxidation not associated with increased mitochondriogenesis, and by reduced de novo lipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, Angulo P (2005) The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129:113–121

    Article  PubMed  Google Scholar 

  2. Aguirre L, Portillo MP, Hijona E, Bujanda L (2014) Effects of resveratrol and other polyphenols in hepatic steatosis. World J Gastroenterol 20:7366–7380

    Article  PubMed Central  PubMed  Google Scholar 

  3. Alberdi G, Macarulla MT, Portillo MP, Rodríguez VM (2014) Resveratrol does not increase body fat loss induced by energy restriction. J Physiol Biochem 70:639–646

    Article  CAS  PubMed  Google Scholar 

  4. Alberdi G, Rodríguez VM, Macarulla MT, Miranda J, Churruca I, Portillo MP (2013) Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet. Nutrition 29:562–567

    Article  CAS  PubMed  Google Scholar 

  5. Arias N, Macarulla MT, Aguirre L, Martínez-Castaño MG, Portillo MP (2014) Quercetin can reduce insulin resistance without decreasing adipose tissue and skeletal muscle fat accumulation. Genes Nutr 9:361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Berlanga A, Guiu-Jurado E, Porras JA, Auguet T (2014) Molecular pathways in non-alcoholic fatty liver disease. Clin Exp Gastroenterol 7:221–239

    PubMed Central  PubMed  Google Scholar 

  7. Bieber LL, Abraham T, Helmrath T (1972) A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem 50:509–518

    Article  CAS  PubMed  Google Scholar 

  8. Boehm O, Zur B, Koch A, Tran N, Freyenhagen R, Hartmann M, Zacharowski K (2007) Clinical chemistry reference database for Wistar rats and C57/BL6 mice. Biol Chem 388:547–554

    Article  CAS  PubMed  Google Scholar 

  9. Bradamante S, Barenghi L, Villa A (2004) Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev 22:169–188

    Article  CAS  PubMed  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  11. Bujanda L, Hijona E, Larzabal M, Beraza M, Aldazabal P, García-Urkia N, Sarasqueta C, Cosme A, Irastorza B, González A, Arenas JI Jr (2008) Resveratrol inhibits nonalcoholic fatty liver disease in rats. BMC Gastroenterol 8:40

    Article  PubMed Central  PubMed  Google Scholar 

  12. Castaño D, Larequi E, Belza I, Astudillo AM, Martínez-Ansó E, Balsinde J, Argemi J, Aragon T, Moreno-Aliaga MJ, Muntane J, Prieto J, Bustos M (2014) Cardiotrophin-1 eliminates hepatic steatosis in obese mice by mechanisms involving AMPK activation. J Hepatol 60:1017–1025

    Article  PubMed  Google Scholar 

  13. Cucciolla V, Borriello A, Oliva A, Galletti P, Zappia V, Della Ragione F (2007) Resveratrol: from basic science to the clinic. Cell Cycle 6:2495–2510

    Article  CAS  PubMed  Google Scholar 

  14. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  15. Gómez-Zorita S, Fernández-Quintela A, Macarulla MT, Aguirre L, Hijona E, Bujanda L, Milagro F, Martínez JA, Portillo MP (2012) Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. Br J Nutr 107:202–210

    Article  PubMed  Google Scholar 

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  17. Macarulla MT, Alberdi G, Gómez S, Tueros I, Bald C, Rodríguez VM, Martínez JA, Portillo MP (2009) Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet. J Physiol Biochem 65:369–376

    Article  CAS  PubMed  Google Scholar 

  18. Macarulla MT, Medina C, De Diego MA, Chávarri M, Zulet MA, Martínez JA, Nöel-Suberville C, Higueret P, Portillo MP (2001) Effects of the whole seed and a protein isolate of faba bean (Vicia faba) on the cholesterol metabolism of hypercholesterolaemic rats. Br J Nutr 85:607–614

    Article  CAS  PubMed  Google Scholar 

  19. Miranda J, Fernández-Quintela A, Churruca I, Rodríguez VM, Simón E, Portillo MP (2009) Hepatomegaly induced by trans-10, cis-12 conjugated linoleic acid in adult hamsters fed an atherogenic diet is not associated with steatosis. J Am Coll Nutr 28:43–49

    Article  CAS  PubMed  Google Scholar 

  20. Panchal SK, Poudyal H, Brown L (2012) Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. J Nutr 142:1026–1032

    Article  CAS  PubMed  Google Scholar 

  21. Poulsen MM, Larsen JØ, Hamilton-Dutoit S, Clasen BF, Jessen N, Paulsen SK, Kjær TN, Richelsen B, Pedersen SB (2012) Resveratrol up-regulates hepatic uncoupling protein 2 and prevents development of nonalcoholic fatty liver disease in rats fed a high-fat diet. Nutr Res 32:701–708

    Article  CAS  PubMed  Google Scholar 

  22. Shang J, Chen LL, Xiao FX, Sun H, Ding HC, Xiao H (2008) Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta Pharmacol Sin 29:698–706

    Article  CAS  PubMed  Google Scholar 

  23. Somerset SM, Johannot L (2008) Dietary flavonoid sources in Australian adults. Nutr Cancer 60:442–449

    Article  CAS  PubMed  Google Scholar 

  24. Srere PA (1969) Citrate synthase. Methods Enzymol 13:3–11

    Article  CAS  Google Scholar 

  25. Zabala A, Churruca I, Macarulla MT, Rodríguez VM, Fernández-Quintela A, Martínez JA, Portillo MP (2004) The trans-10, cis-12 isomer of conjugated linoleic acid reduces hepatic triacylglycerol content without affecting lipogenic enzymes in hamsters. Br J Nutr 92:383–389

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Song H, Ge Y, Ji G, Yao Z (2015) Temporal relationship between diet-induced steatosis and onset of insulin/leptin resistance in male Wistar rats. PLoS One 10:e0117008

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Ministerio de Economía y Competitividad (AGL2011-27406-ALI), Instituto de Salud Carlos III (CIBERobn), Government of the Basque Country (IT-572-13) and University of the Basque Country (UPV/EHU) (ELDUNANOTEK UFI11/32). N. Arias is a recipient of a doctoral fellowship from the Basque Country Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María P. Portillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias, N., Macarulla, M.T., Aguirre, L. et al. Liver delipidating effect of a combination of resveratrol and quercetin in rats fed an obesogenic diet. J Physiol Biochem 71, 569–576 (2015). https://doi.org/10.1007/s13105-015-0403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0403-2

Keywords

Navigation