Skip to main content
Log in

α-Tocopherol protects renal cells from nicotine- or oleic acid-provoked oxidative stress via inducing heme oxygenase-1

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Smoking and obesity increases renal oxidative stress via nicotine (NIC) or free fatty acid such as oleic acid (OA) but decreases levels of the vitamin E-derivative α-tocopherol (TOC), which has shown to stimulate the antioxidant system such as heme oxygenase-1 (HO-1). Hence, we hypothesized that supplementation of TOC may protect renal proximal tubules from NIC- or OA-mediated oxidative stress by upregulating the HO-1 gene. NIC- or OA-dependent production of reactive oxygen species (ROS) was determined in the presence or absence of various pharmacologic or genetic inhibitors that modulate HO-1 activation and enhancer elements in the HO-1 promoter such as the antioxidant response element (ARE) and the cAMP-response element (CRE) in renal proximal tubule cells (NRK52E). Activity of the HO-1 promoter, the ARE and the CRE was determined in luciferase assays. We found that pre- or posttreatment with TOC attenuated NIC- or OA-dependent ROS production that required HO-1 activation. TOC activated the HO-1 promoter via the CRE but not the ARE enhancer through the extracellular signal-regulated kinase (ERK) and protein kinase A (PKA). Consequently, inhibitors of ERK, PKA, or CRE activation mitigated beneficial effects of TOC on NIC- or OA-mediated ROS production. Hence, vitamin E supplementation—via induction of the cytoprotective HO-1—may help to reduce renal oxidative stress imposed by smoking or obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abraham NG, Cao J, Sacerdoti D et al (2009) Heme oxygenase: the key to renal function regulation. Am J Physiol Renal Physiol 297:F1137–1152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Alam J, Cook JL (2007) How many transcription factors does it take to turn on the heme oxygenase-1 gene. Am J Respir Cell Mol Biol 36:166–174

    Article  CAS  PubMed  Google Scholar 

  3. Alam J, Cook JL (2003) Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway. Curr Pharm Des 9:2499–2511

    Article  CAS  PubMed  Google Scholar 

  4. Arany I, Clark JS, Reed DK et al (2013) Role of p66shc in renal toxicity of oleic acid. Am J Nephrol 38:226–232

    Article  CAS  PubMed  Google Scholar 

  5. Arany I, Faisal A, Clark JS et al (2010) p66SHC-mediated mitochondrial dysfunction in renal proximal tubule cells during oxidative injury. Am J Physiol Renal Physiol 298:F1214–1221

    Article  CAS  PubMed  Google Scholar 

  6. Arany I, Grifoni S, Clark JS et al (2011) Chronic nicotine exposure exacerbates acute renal ischemic injury. Am J Physiol Renal Physiol 301:F125–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chandrashekar K, Lopez-Ruiz A, Juncos R et al (2012) The modulatory role of heme oxygenase on subpressor angiotensin ii-induced hypertension and renal injury. Int J Hypertens 2012:392890

    Article  PubMed Central  PubMed  Google Scholar 

  8. Cobb MH (1999) MAP kinase pathways. Prog Biophys Mol Biol 71:479–500

    Article  CAS  PubMed  Google Scholar 

  9. Cornwell DG, Kruger FA, Hamwi GJ et al (1962) Correlations between lipoprotein concentration and fatty acid composition in serum of normal and hyperlipemic subjects: a review. Metabolism 11:840–849

    CAS  PubMed  Google Scholar 

  10. Egan BM, Lu G, Greene EL (1999) Vascular effects of non-esterified fatty acids: Implications for the cardiovascular risk factor cluster. Prostagland Leukot Essent Fatty Acids 60:411–420

    Article  CAS  Google Scholar 

  11. Ferenbach DA, Kluth DC, Hughes J (2010) Hemeoxygenase-1 and renal ischaemia-reperfusion injury. Nephron Exp Nephrol 115:e33–37

    Article  CAS  PubMed  Google Scholar 

  12. Furuyama K, Kaneko K, Vargas PD (2007) Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. Tohoku J Exp Med 213:1–16

    Article  CAS  PubMed  Google Scholar 

  13. Ginty DD, Bonni A, Greenberg ME (1994) Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77:713–725

    Article  PubMed  Google Scholar 

  14. Godala M, Materek-Kusmierkiewicz I, Moczulski D et al (2014) Estimation of plasma vitamin A, C and E levels in patients with metabolic syndrome. Pol Merkur Lekarski 36:320–323

    CAS  PubMed  Google Scholar 

  15. Goven D, Boutten A, Lecon-Malas V et al (2009) Prolonged cigarette smoke exposure decreases heme oxygenase-1 and alters Nrf2 and Bach1 expression in human macrophages: Roles of the MAP kinases ERK(1/2) and JNK. FEBS Lett 583:3508–3518

    Article  CAS  PubMed  Google Scholar 

  16. Gray DS, Takahashi M, Bauer M et al (1991) Changes in individual plasma free fatty acids in obese females during fasting and refeeding. Int J Obes 15:163–168

    CAS  PubMed  Google Scholar 

  17. Halimi JM, Mimran A (2000) Renal effects of smoking: Potential mechanisms and perspectives. Nephrol Dial Transplant 15:938–940

    Article  CAS  PubMed  Google Scholar 

  18. Hernandez-Pinto AM, Puebla-Jimenez L, Arilla-Ferreiro E (2009) alpha-Tocopherol decreases the somatostatin receptor-effector system and increases the cyclic AMP/cyclic AMP response element binding protein pathway in the rat dentate gyrus. Neuroscience 162:106–117

    Article  CAS  PubMed  Google Scholar 

  19. Hosick PA, Stec DE (2012) Heme oxygenase, a novel target for the treatment of hypertension and obesity. Am J Physiol Regul Integr Comp Physiol 302:R207–214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hukkanen J, Jacob P III, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79–115

    Article  CAS  PubMed  Google Scholar 

  21. Husain K, Scott BR, Reddy SK et al (2001) Chronic ethanol and nicotine interaction on rat tissue antioxidant defense system. Alcohol 25:89–97

    Article  CAS  PubMed  Google Scholar 

  22. Ishola DA Jr, Post JA, van Timmeren MM et al (2006) Albumin-bound fatty acids induce mitochondrial oxidant stress and impair antioxidant responses in proximal tubular cells. Kidney Int 70:724–731

    Article  CAS  PubMed  Google Scholar 

  23. Jaimes EA, Tian RX, Raij L (2007) Nicotine: the link between cigarette smoking and the progression of renal injury. Am J Physiol Heart Circ Physiol 292:H76–82

    Article  CAS  PubMed  Google Scholar 

  24. Johannessen M, Delghandi MP, Moens U (2004) What turns CREB on. Cell Signal 16:1211–1227

    Article  CAS  PubMed  Google Scholar 

  25. Kie JH, Kapturczak MH, Traylor A et al (2008) Heme oxygenase-1 deficiency promotes epithelial-mesenchymal transition and renal fibrosis. J Am Soc Nephrol 19:1681–1691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kim HB, Shanu A, Wood S et al (2011) Phenolic antioxidants tert-butyl-bisphenol and vitamin E decrease oxidative stress and enhance vascular function in an animal model of rhabdomyolysis yet do not improve acute renal dysfunction. Free Radic Res 45:1000–1012

    Article  CAS  PubMed  Google Scholar 

  27. Kitamuro T, Takahashi K, Ogawa K et al (2003) Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J Biol Chem 278:9125–9133

    Article  CAS  PubMed  Google Scholar 

  28. Lessa LM, Carraro-Lacroix LR, Crajoinas RO et al (2012) Mechanisms underlying the inhibitory effects of uroguanylin on NHE3 transport activity in renal proximal tubule. Am J Physiol Renal Physiol 303:F1399–1408

    Article  CAS  PubMed  Google Scholar 

  29. Morsy MD, Bashir SO (2013) Alpha-tocopherol ameliorates oxidative renal insult associated with spinal cord reperfusion injury. J Physiol Biochem 69:487–496

    Article  CAS  PubMed  Google Scholar 

  30. Muthukumaran S, Sudheer AR, Menon VP et al (2008) Protective effect of quercetin on nicotine-induced prooxidant and antioxidant imbalance and DNA damage in Wistar rats. Toxicology 243:207–215

    Article  CAS  PubMed  Google Scholar 

  31. Nath KA (2006) Heme oxygenase-1: a provenance for cytoprotective pathways in the kidney and other tissues. Kidney Int 70:432–443

    CAS  PubMed  Google Scholar 

  32. Nath KA, Vercellotti GM, Grande JP et al (2001) Heme protein-induced chronic renal inflammation: suppressive effect of induced heme oxygenase-1. Kidney Int 59:106–117

    Article  CAS  PubMed  Google Scholar 

  33. Ng M, Fleming T, Robinson M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet 384:766–781

    Article  PubMed  Google Scholar 

  34. Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2—an update. Free Radic Biol Med 66:36–44

    Article  CAS  PubMed  Google Scholar 

  35. Orth SR (2000) Smoking—a renal risk factor. Nephron 86:12–26

    Article  CAS  PubMed  Google Scholar 

  36. Orth SR, Ritz E (2002) The renal risks of smoking: an update. Curr Opin Nephrol Hypertens 11:483–488

    Article  PubMed  Google Scholar 

  37. Paine A, Eiz-Vesper B, Blasczyk R et al (2010) Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol 80:1895–1903

    Article  CAS  PubMed  Google Scholar 

  38. Park JY, Kim YM, Song HS et al (2003) Oleic acid induces endothelin-1 expression through activation of protein kinase C and NF-kappa B. Biochem Biophys Res Commun 303:891–895

    Article  CAS  PubMed  Google Scholar 

  39. Patra RC, Swarup D, Dwivedi SK (2001) Antioxidant effects of alpha tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology 162:81–88

    Article  CAS  PubMed  Google Scholar 

  40. Prawan A, Kundu JK, Surh YJ (2005) Molecular basis of heme oxygenase-1 induction: implications for chemoprevention and chemoprotection. Antioxid Redox Signal 7:1688–1703

    Article  CAS  PubMed  Google Scholar 

  41. Pugazhenthi S, Akhov L, Selvaraj G et al (2007) Regulation of heme oxygenase-1 expression by demethoxy curcuminoids through Nrf2 by a PI3-kinase/Akt-mediated pathway in mouse beta-cells. Am J Physiol Endocrinol Metab 293:E645–655

    Article  CAS  PubMed  Google Scholar 

  42. Schaaf GJ, Maas RF, de Groene EM et al (2002) Management of oxidative stress by heme oxygenase-1 in cisplatin-induced toxicity in renal tubular cells. Free Radic Res 36:835–843

    Article  CAS  PubMed  Google Scholar 

  43. Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287

    Article  CAS  PubMed  Google Scholar 

  44. Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861

    Article  CAS  PubMed  Google Scholar 

  45. Sikorski EM, Hock T, Hill-Kapturczak N et al (2004) The story so far: molecular regulation of the heme oxygenase-1 gene in renal injury. Am J Physiol Renal Physiol 286:F425–441

    Article  CAS  PubMed  Google Scholar 

  46. Tan Y, Ichikawa T, Li J et al (2011) Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes 60:625–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more. Free Radic Biol Med 43:4–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Tracz MJ, Juncos JP, Croatt AJ et al (2007) Deficiency of heme oxygenase-1 impairs renal hemodynamics and exaggerates systemic inflammatory responses to renal ischemia. Kidney Int 72:1073–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Wakabayashi N, Slocum SL, Skoko JJ et al (2010) When NRF2 talks, who’s listening. Antioxid Redox Signal 13:1649–1663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Weber JD, Raben DM, Phillips PJ et al (1997) Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem J 326(Pt 1):61–68

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Weinberg JM (2006) Lipotoxicity. Kidney Int 70:1560–1566

    Article  CAS  PubMed  Google Scholar 

  52. Wesseling S, Joles JA, van Goor H et al (2007) Transcriptome-based identification of pro- and antioxidative gene expression in kidney cortex of nitric oxide-depleted rats. Physiol Genomics 28:158–167

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant provided by an American Heart Association Grant-in-Aid 10GRNT3790019 (to I.A.) as well as an IRSP Grant from the UMMC (to I.A.). The authors wish to thank to Dr. Alam for the HO-1-promoter luciferase plasmid, to Dr. Greenberg for the M1CREB plasmid, and to Dr. Weber for the dnMEK plasmid.

Conflict of interest

The authors do not declare any conflict of interest. The results presented in this paper have not been published previously in whole or part, except in abstract format.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Istvan Arany.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig6

Supplementary Figure. Activation of the HO-1 promoter by TOC is temporal and depends on its concentration. NRK52E cells were transfected with a HO-1-promoter plasmid together with a renilla luciferase and treated with increasing concentration of TOC, as indicated. Luciferase activities were determined after 24 hours treatment. Results were calculated as firefly/renilla ratios and expressed as percentage of untreated values. N = 3, *p < 0.05 compared to untreated control (GIF 17 kb)

High Resolution Image (TIFF 11933 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reed, D.K., Hall, S. & Arany, I. α-Tocopherol protects renal cells from nicotine- or oleic acid-provoked oxidative stress via inducing heme oxygenase-1. J Physiol Biochem 71, 1–7 (2015). https://doi.org/10.1007/s13105-014-0372-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-014-0372-x

Keywords

Navigation