Skip to main content
Log in

Coronary CT angiography and high-risk plaque morphology

  • Review Article
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

Abstract

Computed tomography angiography (CTA) is commonly employed for exclusion of coronary artery disease and demonstration of the extent of coronary vascular involvement. It has been recently proposed that coronary artery plaques could be visualized noninvasively. This review article focused on the high risk plaque detected by CTA. Plaque characteristics of acute coronary syndrome (ACS) was compared to sable angina pectoris (SAP). The presence of positive remodeling (ACS 87 %, SAP 12 %, p < 0.0001), low attenuation plaque (LAP) (ACS 79 %, SAP 9 %, p < 0.0001), and spotty calcification (ACS 63 %, SAP 21 %, p = 0.0005) were significantly more frequent in the culprit ACS lesions. Furthermore, in asymptomatic patients, presence of positively remodeling and LAP portends a greater risk for development of acute coronary events (hazard ratio = 22.8, CI = 6.9–75.2, p < 0.001). Possibility of drug intervention to high risk plaque was also reported. Serial CTA assessment allows for evaluation of interval change in morphological plaque characteristics and can be employed for assessment of efficacy of therapeutic intervention. Use of statin results in substantial reduction in LAP volume (follow-up: 4.9 ± 7.8 versus baseline: 1.3 ± 2.3 mm3, p = 0.02) forwards stabilization of plaques. Although not recommended currently as a population-based strategy, CT angiographic examination may help identify very high risk asymptomatic subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bluemke DA, Achenbach S, Budoff M, et al. Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a Scientific Statement From the American Heart Association Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention, and the Councils on Clinical Cardiology and Cardiovascular Disease in the Young. Circulation. 2008;118:586–606.

    Article  PubMed  Google Scholar 

  2. Raff GL, Abidov A, Achenbach S, et al. SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr. 2009;3:122–36.

    Article  PubMed  Google Scholar 

  3. Davies MJ. The composition of coronary-artery plaques. N Engl J Med. 1997;336:1312–4.

    Article  PubMed  CAS  Google Scholar 

  4. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–82.

    Article  PubMed  CAS  Google Scholar 

  5. Narula J, Finn AV, Demaria AN. Picking plaques that pop. J Am Coll Cardiol. 2005;45:1970–3.

    Article  PubMed  Google Scholar 

  6. Narula J, Willerson JT. Prologue: detection of vulnerable plaque. J Am Coll Cardiol. 2006;47:C1.

    Article  Google Scholar 

  7. Muller JE, Tawakol A, Kathiresan S, Narula J. New opportunities for identification and reduction of coronary risk: treatment of vulnerable patients, arteries, and plaques. J Am Coll Cardiol. 2006;47:C2–6.

    Article  PubMed  Google Scholar 

  8. Hassani S-E, Mintz GS, Fong HS, et al. Negative remodeling and calcified plaque in octogenarians with acute myocardial infarction: an intravascular ultrasound analysis. J Am Coll Cardiol. 2006;47:2413–9.

    Article  PubMed  Google Scholar 

  9. Maehara A, Mintz GS, Bui AB, et al. Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound. J Am Coll Cardiol. 2002;40:904–10.

    Article  PubMed  Google Scholar 

  10. Ehara S, Kobayashi Y, Yoshiyama M, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation. 2004;110:3424–9.

    Article  PubMed  Google Scholar 

  11. Sano K, Kawasaki M, Ishihara Y, et al. Assessment of vulnerable plaques causing acute coronary syndrome using integrated backscatter intravascular ultrasound. J Am Coll Cardiol. 2006;47:734–41.

    Article  PubMed  Google Scholar 

  12. Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111:1551–5.

    Article  PubMed  Google Scholar 

  13. Stamper D, Weissman NJ, Brezinski M. Plaque characterization with optical coherence tomography. J Am Coll Cardiol. 2006;47:C69–79.

    Article  PubMed  Google Scholar 

  14. Schneiderman J, Wilensky RL, Weiss A, et al. Diagnosis of thin-cap fibroatheromas by a self-contained intravascular magnetic resonance imaging probe in ex vivo human aortas and in situ coronary arteries. J Am Coll Cardiol. 2005;45:1961–9.

    Article  PubMed  Google Scholar 

  15. Wilensky RL, Song HK, Ferrari VA. Role of magnetic resonance and intravascular magnetic resonance in the detection of vulnerable plaques. J Am Coll Cardiol. 2006;47:C48–56.

    Article  PubMed  Google Scholar 

  16. Toutouzas K, Drakopoulou M, Mitropoulos J, et al. Elevated plaque temperature in non-culprit de novo atheromatous lesions of patients with acute coronary syndromes. J Am Coll Cardiol. 2006;47:301–6.

    Article  PubMed  Google Scholar 

  17. Madjid M, Willerson JT, Casscells SW. Intracoronary thermography for detection of high-risk vulnerable plaques. J Am Coll Cardiol. 2006;47:C80–5.

    Article  PubMed  Google Scholar 

  18. Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation. 2000;101:598–603.

    Article  PubMed  CAS  Google Scholar 

  19. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation. 2003;108:1772–8.

    Article  PubMed  Google Scholar 

  20. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26.

    Article  PubMed  Google Scholar 

  21. Inoue F, Sato Y, Matsumoto N, et al. Evaluation of plaque texture by means of multislice computed tomography in patients with acute coronary syndrome and stable angina. Circ J. 2004;68:840–4.

    Article  PubMed  Google Scholar 

  22. Imazeki T, Sato Y, Inoue F, Anazawa T, Tani S, Matsumoto N, et al. Evaluation of coronary artery remodeling in patients with acute coro-nary syndrome and stable angina by multislice computed tomogra-phy. Circ J. 2004;68(1045–1050):30.

    Google Scholar 

  23. Hoffmann U, Moselewski F, Nieman K, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol. 2006;47:1655–62.

    Article  PubMed  Google Scholar 

  24. Tanaka A, Shimada K, Yoshida K, et al. Non-invasive assessment of plaque rupture by 64-slice multidetector computed tomography—comparison with intravascular ultrasound. Circ J. 2008;72:1276–81.

    Article  PubMed  Google Scholar 

  25. Shapiro E, Bush D, Motoyama S, Virmani R, Narula J. Imaging of vulnerable atherosclerotic plaques. In: Budoff M, Achenbach S, Narula J, editors. Atlas of cardiovascular computed tomography. Philadelphia: Current Medicine Group LLC; 2007. p. 119–38.

    Google Scholar 

  26. Narula J, Garg P, Achenbach S, Motoyama S, Virmani R, Strauss HW. Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med. 2008;5(Suppl 2):S2–10.

    Article  PubMed  Google Scholar 

  27. Motoyama S, Sarai M, Harigaya H, et al. Computed tomograpiographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57.

    Article  PubMed  Google Scholar 

  28. Braunwald E. Epilogue: what do clinicians expect from imagers? J Am Coll Cardiol. 2006;47:C101–3.

    Article  PubMed  Google Scholar 

  29. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837–47.

    Article  PubMed  CAS  Google Scholar 

  30. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347:1557–65.

    Article  PubMed  CAS  Google Scholar 

  31. Braunwald E. Noninvasive detection of vulnerable coronary plaques: locking the barn door before the horse is stolen. J Am Coll Cardiol. 2009;54:58–9.

    Article  PubMed  Google Scholar 

  32. Motoyama S, Anno H, Sarai M, et al. Noninvasive coronary angiography with a prototype 256-row area detector computed tomography system: comparison with conventional invasive coronary angiography. J Am Coll Cardiol. 2008;51:773–5.

    Article  PubMed  Google Scholar 

  33. Rybicki FJ, Otero HJ, Steigner ML, et al. Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imag. 2008;24:535–46.

    Article  Google Scholar 

  34. Husmann L, Valenta I, Gaemperli O, et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J. 2008;29:191–7.

    Article  PubMed  Google Scholar 

  35. Achenbach S, Anders K, Kalender WA. Dual-source cardiac computed tomography: image quality and dose considerations. Eur Radiol. 2008;18:1188–98.

    Article  PubMed  Google Scholar 

  36. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344:1383–9.

  37. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med. 1996;335:1001–9.

    Article  PubMed  CAS  Google Scholar 

  38. Streja L, Packard CJ, Shepherd J, Cobbe S, Ford I. Factors affecting low-density lipoprotein and high-density lipoprotein cholesterol response to pravastatin in the West Of Scotland Coronary Prevention Study (WOSCOPS). Am J Cardiol. 2002;90:731–6.

    Article  PubMed  CAS  Google Scholar 

  39. Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.

    Article  PubMed  CAS  Google Scholar 

  40. Tung P, Wiviott SD, Cannon CP, Murphy SA, McCabe CH, Gibson CM. Seasonal variation in lipids in patients following acute coronary syndrome on fixed doses of pravastatin (40 mg) or atorvastatin (80 mg) (from the Pravastatin or Atorvastatin Evaluation and Infection Therapy—thrombolysis in myocardial infarction 22 [PROVE IT-TIMI 22] Study). Am J Cardiol 2009;103:1056–60.

    Google Scholar 

  41. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291:1071–80.

    Article  PubMed  CAS  Google Scholar 

  42. Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295:1556–65.

    Article  PubMed  CAS  Google Scholar 

  43. Hiro T, Kimura T, Morimoto T, et al. Effect of intensive statin therapy on regression of coronary atherosclerosis in patients with acute coronary syndrome: a multicenter randomized trial evaluated by volumetric intravascular ultrasound using pitavastatin versus atorvastatin (JAPAN-ACS [Japan assessment of pitavastatin and atorvastatin in acute coronary syndrome] study). J Am Coll Cardiol. 2009;54:293–302.

    Article  PubMed  Google Scholar 

  44. Rodriguez-Granillo GA, de Winter S, Bruining N, Ligthart JM. EUROPA/PERSPECTIVE: investigators. effect of perindopril on coronary remodelling: insights from a multicentre, randomized study. Eur Heart J. 2007;28:2326–31.

    Article  PubMed  CAS  Google Scholar 

  45. Schoenhagen P, Tuzcu EM, Apperson-Hansen C, et al. Determinants of arterial wall remodeling during lipid-lowering therapy: serial intravascular ultrasound observations from the Reversal of Atherosclerosis with Aggressive Lipid Lowering Therapy (REVERSAL) trial. Circulation. 2006;113:2826–34.

    Article  PubMed  CAS  Google Scholar 

  46. Fujimoto S, Hartung D, Ohshima S, et al. Molecular imaging of matrix metalloproteinase in atherosclerotic lesions: resolution with dietary modification and statin therapy. J Am Coll Cardiol. 2008;52:1847–57.

    Article  PubMed  CAS  Google Scholar 

  47. Inoue K, Motoyama S, Sarai M, et al. Serial coronary CT angiography-verified changes in plaque characteristics as an end point: evaluation of effect of statin intervention. JACC Cardiovasc Imag. 2010;3:691–8.

    Article  Google Scholar 

  48. Achenbach S, Ropers D, Hoffmann U, et al. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol. 2004;43:842–7.

    Article  PubMed  Google Scholar 

  49. Leber AW, Becker A, Knez A, et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol. 47:672–7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadako Motoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motoyama, S., Sarai, M., Narula, J. et al. Coronary CT angiography and high-risk plaque morphology. Cardiovasc Interv and Ther 28, 1–8 (2013). https://doi.org/10.1007/s12928-012-0140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-012-0140-1

Keywords

Navigation