Skip to main content
Log in

An environmental DNA marker for detecting nonnative brown trout (Salmo trutta)

  • Technical Note
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

Brown trout (Salmo trutta) are widely introduced in western North America where their presence has led to declines of several native species. To assist conservation efforts aimed at early detection and eradication of this species, we developed a quantitative PCR marker to detect the presence of brown trout DNA in environmental samples. The marker strongly amplified brown trout eDNA, and produced no amplification of eDNA from 17 other species commonly found in western North America. We field tested this marker and demonstrated positive detections in field samples where brown trout presence was known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Biggs JN, Ewald A, Valentini C, Gaboriaud T, Dejean RA, Griffiths J, Foster JW, Wilkinson A, Arnell P, Brotherton P, Williams P, Dunn F (2015) Using eDNA to develop a national citizen science based monitoring programme for the great crested newt (Triturus cristatus). Biol Conserv 183:19–28. doi:10.1016/j.biocon.2014.11.029

    Article  Google Scholar 

  • Carim KJ, Padgett TM, Wilcox TM, Young MK, Schwartz MK, McKelvey K (2015) Protocol for collecting eDNA samples from streams. USDA Forest Service- Rocky Mountain Research Station, Missoula, Montana.http://www.fs.fed.us/research/genomics-center/docs/edna/edna-protocol.pdf

  • Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E, Miaud C (2012) Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J Appl Ecol 49:953–959. doi:10.1111/j.1365-2664.2012.02171.x

    Article  Google Scholar 

  • Goldberg CS, Pilliod DS, Arkle RS, Waits LP (2011) Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PLoS ONE 6:e22746. doi:10.1371/journal.pone.0022746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustavson MS, Collings PC, Finarelli JA, Egan D, Conchuir RO, Wightman GD, King JJ, Gauther DT, Whelan K, Carlsson JEL, Carlsson J (2015) An eDNA marker for Irish Petromyzon mariunis and Salmo trutta and field validation in running water. J Fish Biol. doi:10.1111/jfb.12781

    PubMed  Google Scholar 

  • MacCrimmon HR, Marshall TL (1968) World distribution of brown trout, Salmo trutta. J Fish Res Board Canada 1968(25):2527–2548

    Article  Google Scholar 

  • McHugh P, Budy P (2005) Experimental effects of nonnative brown trout on the individual- and populations-level performance of native Bonneville cutthroat trout. Trans Am Fish Soc 135:1441–1455. doi:10.1577/T05-309.1

    Article  Google Scholar 

  • McKelvey KS, Young MK, Knotek EL, Wilcox TM, Carim KJ, Padgett TM, Schwartz MK (2016) Sampling large geographic areas for rare species using environmental DNA (eDNA): a study of bull trout Salvelinus confluentus occupancy in western Montana. J Fish Biol 88:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rees H, Bishop K, Middleditch DJ, Parmore JR, Maddison BC, Gough KC (2014) The application of eDNA for monitoring of the great crested new in the U.K. Ecol Evol 4:4023–4032. doi:10.1002/ece3.1272

    Article  PubMed  PubMed Central  Google Scholar 

  • Siggsgaard AA, Carl H, Moller P, Thomsen PF (2015) Monitoring near-extinct of European weather loach in Denmark based on enviornmental DNA from water samples. Biol Conserv 183:46–52. doi:10.1016/j.biocon.2014.11.023

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • U.S. Fish and Wildlife Service (2009) Apache trout recovery plan, second revision. Albuquerque, New Mexico

    Google Scholar 

  • Wilcox TM, Carim KJ, McKelvey KS, Young MK, Schwartz MK (2015) The dual challenges of generality and specificity with developing environmental DNA markers for species and subspecies of Oncorhynchus. PLoS ONE. doi:10.1371/journal.pone.0142008

    Google Scholar 

  • Wilcox TM, McKelvey KS, Young MK, Sepulveda AJ, Shepard BB, Jane SF, Whiteley AR, Lowe WH, Schwartz MK (2016) Understanding environmental DNA detection probabilities: a case study using a stream dwelling char Salvelinus fontinalis. Biol Conserv 194:209–216

    Article  Google Scholar 

  • Wright ES, Yilmaz LS, Ram S, Gasser JM, Harrington GW, Noguera DR (2013) Exploiting extension bias in polymerase chain reaction to improve primer specificity in ensembles of nearly identical DNA templates. Environ Microbiol 16:1354–1365. doi:10.1111/1462-2920.12259

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Carim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carim, K.J., Wilcox, T.M., Anderson, M. et al. An environmental DNA marker for detecting nonnative brown trout (Salmo trutta). Conservation Genet Resour 8, 259–261 (2016). https://doi.org/10.1007/s12686-016-0548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-016-0548-5

Keywords

Navigation