Skip to main content

Advertisement

Log in

OER Activity of Ir-Ta-Zr Composite Anode as a Counter Electrode for Electrohydrogenation of Toluene

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The organic chemical hydride method using the toluene (TL)/methylcyclohexane (MCH) system is one of the prospective energy carrier technologies for hydrogen storage and transportation. The direct electrohydrogenation of toluene with water decomposition using electric power is a highly efficient energy conversion process for the MCH synthesis. In this process, an IrO2-based directionally stable electrode® (DSE®) for the oxygen evolution reaction (OER) is used as the anode because of its good electrocatalytic activity and durability. However, further improvement in the activity is needed for practical applications. In this study, the effect of Zr addition substituted for Ta in IrO2-Ta2O5/Ti, which is a typical OER anode, on the electrocatalytic activity has been investigated in sulfuric acid with TL contamination. The activity of both the IrO2-Ta2O5/Ti and the IrO2-Ta2O5-ZrO2/Ti was higher and less affected by TL contamination than the IrO2/Ti. The activity of the IrO2-Ta2O5-ZrO2/Ti increased with the Zr content. The Zr addition increased the real surface area along with the increase in the double layer capacitance; on the other hand, the increase in activity was more than that of the surface area. Therefore, the Zr additive would affect not only the real surface area increase, but also the electrocatalytic activity.

Schematic drawing of electrolyzer for direct electrohydrogenation of toluene with water decomposition (left). Oxygen evolution reaction current on Ir50Ta20Zr30-oxide/Ti, Ir50Ta50-oxide/Ti, and IrO2/Ti with (dash) and without (solid) toluene contamination as a function of the potential in 1 M H2SO4 at 60 oC (right).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Trasatti, Electrochim Acta 45, 2377 (2000)

    Article  CAS  Google Scholar 

  2. G.P. Vercesi, J. Rolewicz, C. Comninellis, J. Hinden, Thermochim Acta 176, 31 (1991)

    Article  CAS  Google Scholar 

  3. J.M. Hu, J.Q. Zhang, H.M. Meng, C.N. Cao, J Mater Sci 38, 705 (2003)

    Article  CAS  Google Scholar 

  4. J.M. Hu, H.M. Meng, J.Q. Zhang, C.N. Cao, Corr Sci 44, 1655 (2002)

    Article  CAS  Google Scholar 

  5. J. Kristof, J. Mink, A. De Battisti, J. Liszi, Electrochim Acta 39, 1531 (1994)

    Article  CAS  Google Scholar 

  6. A. Benedetti, P. Riello, G. Battaglin, A. De Battisti, A. Barbieri, J Electroanal Chem 376, 195 (1994)

    Article  CAS  Google Scholar 

  7. W. Hu, S. Chen, Q. Xia, Int J Hydrogen Energy 39, 6967 (2014)

    Article  CAS  Google Scholar 

  8. A.J. Terezo, E.C. Pereira, Electrochim Acta 45, 4351 (2000)

    Article  CAS  Google Scholar 

  9. C.P. De Pauli, S. Trasatti, J Electroanal Chem 396, 161 (1995)

    Article  Google Scholar 

  10. Z.-G. Ye, H.-M. Meng, D.-B. Sun, Electrochim Acta 53, 5639 (2008)

    Article  CAS  Google Scholar 

  11. K. Kawaguchi, M. Morimitsu, Electrochemistry 83, 256 (2015)

    Article  CAS  Google Scholar 

  12. C. Comninellis, G.P. Vercesi, J Appl Electrochem 21, 335 (1991)

    Article  CAS  Google Scholar 

  13. J. Gretz, J.P. Baselt, O. Ullmann, H. Wendt, Int J Hydrogen Energy 15(6), 419 (1990)

    Article  CAS  Google Scholar 

  14. J. Gretz, J.P. Baselt, D. Kluyskens, F. Sandmann, O. Ullmann, Int J Hydrogen Energy 19(2), 169 (1994)

    Article  Google Scholar 

  15. S. Mitsushima, Y. Takakuwa, K. Nagasawa, Y. Sawaguchi, Y. Kohno, K. Matsuzawa, Z. Awaludin, A. Kato, Y. Nishiki, Electrocatalysis 7, 127 (2016)

    Article  CAS  Google Scholar 

  16. M. Morimitsu, H. Tamura, M. Matsunaga, R. Otogawa, J Appl Electrochem 30, 511 (2000)

    Article  CAS  Google Scholar 

  17. Y.E. Roginskaya, O.V. Morozova, E.N. Loubnin, A.V. Popov, Y.I. Ulitina, V.V. Zhurov, S.A. Ivanov, S. Trasatti, J Chem Soc Faraday Trans 89, 1707 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “energy carrier” (Funding agency: JST). The Institute of Advanced Sciences (IAS) in YNU is supported by the MEXT Program for Promoting the Reform of National Universities. We appreciate all persons involved in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigenori Mitsushima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagai, K., Nagasawa, K. & Mitsushima, S. OER Activity of Ir-Ta-Zr Composite Anode as a Counter Electrode for Electrohydrogenation of Toluene. Electrocatalysis 7, 441–444 (2016). https://doi.org/10.1007/s12678-016-0325-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0325-y

Keywords

Navigation