Skip to main content

Advertisement

Log in

Co-sputtered PtxPdyAlz thin film electrocatalysts for the production of hydrogen via SO2(aq) electro-oxidation

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A co-sputtered PtxPdyAlz ternary system was investigated for potential use as anode catalyst for the electro-oxidation of aqueous sulphur dioxide (SO2), a key reaction in the hybrid sulphur (HyS) process for splitting water into hydrogen and oxygen. Combining the noble metals Pt and Pd with Al resulted in no significant improvement in onset potential; however, current output was improved for the majority of the electrocatalysts evaluated. Of these electrocatalysts, only a single ternary composition exhibited improved stability when compared to pure Pt. It was found that a combination of Pt40Pd57Al3 (annealed at 900 °C) exhibited superior performance when compared to pure Pt and the previously determined best binary electrocatalyst, i.e. Pt3Pd2. Current density (mA.mg Pt−1) increased from 108.11 to 181.21 and finally to 396.73 for Pt, Pt3Pd2 and Pt40Pd57Al3, respectively, indicating an increase in activity that correlates with a decrease in Pt content. Atomic force microscopy (AFM) revealed an increase in surface roughness for Pt, Pt3Pd2 and Pt40Pd57Al3, while the occurrence of metal interaction and certain degrees of Al migration (a result of annealing) was confirmed for Pt40Pd57Al3 by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction analysis (XRD).

The electro-oxidation of aqueous SO2 is a key reaction in the hybrid sulphur (HyS) process for water-splitting. A sputtered PtxPdyAlz ternary system was investigated for potential use as anode catalyst. It was found that a combination of Pt40Pd57Al3 annealed at 900 °C, exhibited noteworthy performance when compared to pure Pt and the previously determined best binary electrocatalyst, i.e. Pt3Pd2. Current density (mA.mg Pt−1) increased from 108.11 to 181.21 and finally to 396.73 for Pt, Pt3Pd2, and Pt40Pd57Al3, respectively, indicating an increase in activity that correlates with a decrease in Pt content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C-J. Winter, Int. J. Hydrog. Energy 34, S1–S52 (2009)

    Article  CAS  Google Scholar 

  2. K.L. Kovacs, G. Maroti, G. Rakhely, Int. J. Hydrog. Energy 31, 1460–1468 (2006)

    Article  CAS  Google Scholar 

  3. M.A. Rosen, D.S. Scott, Int. J. Hydrog. Energy 23, 653–659 (1998)

    Article  CAS  Google Scholar 

  4. P. Sivasubramanian, P.R. Ramaraja, F.J. Freire, C.E. Holland, J.W. Wiedner, Int. J. Hydrog. Energy 32, 436–468 (2007)

    Article  Google Scholar 

  5. R. Chaubey, S. Sahu, O.O. James, S. Maity, Renew. Sust. Energ. Rev. 23, 443–462 (2013)

    Article  CAS  Google Scholar 

  6. L. Xue, P. Zhang, S. SChen, L. Wang, Chem. Eng. Process. 89, 70–74 (2015)

    Article  CAS  Google Scholar 

  7. M.B. Gorensek, W.A. Summer, Int. J. Hydrog. Energy 34, 4097–4114 (2009)

    Article  CAS  Google Scholar 

  8. J.W. Weidner, J. Appl. Electrochem. (2016). doi:10.1007/s10800-016-0962-0,1–11

    Google Scholar 

  9. G. H. Farbman, The conceptual design of an integrated nuclear-hydrogen production plant using the sulfur cycle water decomposition system, Report NASA-CR-134976, NASA contractor report, NASA-CR-134976, (1976)

  10. M. B. Gorensek and W. A. Summer, in Nuclear hydrogen production handbook, eds. L. Y. Xing and H. Ryutaro, CRC Press, United States of America, ch. 499–538 (2011)

  11. P. W. T. Lu, R. L. Ammon and G. H. Parker, A study on the electrolysis of sulfur dioxide and water for the sulfur cycle hydrogen production process, NASA contractor report, NASA-CR-163517, (1980)

  12. L. C. Brown, J. E. Funk and S. K. Showalter, Initial screening of thermochemical water-splitting cycles for high efficiency generation of hydrogen fuels using nuclear power, General Atomics, Report No. GA-A23373, April (2000)

  13. R. C. Weast, CRC Handbook of Chemistry and Physics, 70th ed., CRC Press Inc, Boca Raton, Florida, 1989–1990.

  14. B.D. Struck, R. Junginger, D. Boltersdorf, J. Gehrmann, Int. J. Hydrog. Energy 5, 487–497 (1980)

    Article  CAS  Google Scholar 

  15. J.A. Staser, M.B. Gorensek, J.W. Weidner, J. Electrochem. Soc. 157, B952–B958 (2010)

    Article  CAS  Google Scholar 

  16. J.A. Allen, G. Rowe, J.T. Hinkley, S.W. Donne, Int. J. Hydrog. Energy 39, 11376–11389 (2014)

    Article  CAS  Google Scholar 

  17. M. B. Gorensek, W. A. Summer, C. O. Bolthrunis, E. J. Lahoda, D. T. Allen and R. Greyvenstein, Hybrid Sulfur Process Reference Design and Cost Analysis - Final Report SRNL-L1200-2008-00002. Rev 1, 2009

  18. L. Xue, P. Zhang, S. Chen and L. Wang, Int. J. Hydrog. Energy 39, 14196–14203 (2014)

  19. S. Lee, C. Kim, W. Cho, K. Kang, C. Park, K. Bae, Int. J. Hydrog. Energy 34, 4701–4707 (2009)

    Article  CAS  Google Scholar 

  20. A. Falch, V. Lates, R.J. Kriek, Electrocatalysis 6, 322–380 (2015)

    Article  CAS  Google Scholar 

  21. A. Falch, V.A. Lates, H.S. Kotze, R.J. Kriek, Electrocatalysis 7, 33–41 (2016)

    Article  CAS  Google Scholar 

  22. A.R. Despic, D.M. Drazic, M.M. Purenovic, N. Cikovic, J. Appl. Electrochem. 6, 527–542 (1976)

    Article  CAS  Google Scholar 

  23. J. Lee, J. Appl. Electrochem. 25, 353–357 (1995)

    Article  CAS  Google Scholar 

  24. J.A. O’Brien, J.T. Hinkely, S.W. Donne, S. Lindquist, Electrochim. Acta 55, 573–591 (2010)

    Article  Google Scholar 

  25. J.S. Cooper, P.J. McGinn, J. Power Sources 163, 330–338 (2006)

    Article  CAS  Google Scholar 

  26. R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, H. Lam, ACS Comb. Sci. 13, 579–633 (2011)

    Article  CAS  Google Scholar 

  27. J.S. Cooper, P.J. McGinn, App. Surf. Sci. 254, 662–668 (2007)

    Article  CAS  Google Scholar 

  28. B.R. Kumar, T.S. Rao, Dig. J. Nanomater. Bios. 7, 1881–1889 (2012)

    Google Scholar 

  29. P. Silva-Bermudez, G. Ramirez, S.E. Rodh, Bio-tribocorrosion in biomaterials and medical implants (Woodhead publishing limited, Cambridge, 2013)

    Google Scholar 

  30. T. Lopes, E. Antolini, E.R. Gonzalez, Int. J. Hydrog. Energy 33, 5563–5570 (2008)

    Article  CAS  Google Scholar 

  31. J.R. Croy, S. Mostafa, L. Hickman, H. Heinrich, B.R. Cuenya, Appl. Catal. A Gen. 350, 207–216 (2008)

    Article  CAS  Google Scholar 

  32. M. Weller, T. Overton, J. Rourke, F. Amstrong, Inorganic chemistry 6th edition (Oxford University Press, United Kingdom, 2014)

    Google Scholar 

  33. E. Garrido, C. Aymonier, L. Roiban, O. Ersen, C. Labrugère, P. Gaillard, M. Lamirand-Majimel, J. Supercrit. Fluids 101, 110–116 (2015)

    Article  CAS  Google Scholar 

  34. C. Audry, M. Vionov, Electrochim. Acta 25, 299–301 (1980)

    Article  CAS  Google Scholar 

  35. C. Quijada, A. Rodes, J. Vazquez, J. Perez, A. Aldaz, J. Electroanal. Chem. 398, 105–115 (1995)

    Article  Google Scholar 

  36. A.J. Appleby, B. Pinchon, J. Electroanal. Chem. 95, 59–71 (1979)

    Article  CAS  Google Scholar 

  37. E.T. Seo, D.T. Sawyer, Electrochim. Acta 10, 239–252 (1965)

    Article  CAS  Google Scholar 

  38. J. O’Brien, J. Hinkley, S. Donne, J. Electrochem. Soc. 157, F111–F115 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged (UNIQUE GRANT NO: 92704). Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF. The assistance of Dr. L. Tiedt with EDX, Mr. H.S. Kotzé with annealing and Me. L. Swartzberg with conventional electrochemistry runs, is gratefully acknowledged. In addition we want to express our gratitude to Mr. E. Lebraud (engineer, ICMCB UPR 9048, 87 av. Albert Schweitzer, 33608 Pessac Cédex France) for assistance with XRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Kriek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falch, A., Badets, V.A., Labrugère, C. et al. Co-sputtered PtxPdyAlz thin film electrocatalysts for the production of hydrogen via SO2(aq) electro-oxidation. Electrocatalysis 7, 376–390 (2016). https://doi.org/10.1007/s12678-016-0319-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0319-9

Keywords

Navigation