Skip to main content
Log in

Effect of the OH/Pt Ratio During Polyol Synthesis on Metal Loading and Particle Size in DMFC Catalysts

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A systematic variation of the molar ratio between hydroxide ions and platinum during polyol synthesis of Pt electrocatalysts supported on carbon nanotubes was conducted. The resulting materials were physically characterized by transmission electron microscopy, thermogravimetric analysis, and X-ray diffraction. It could be shown that precise control of the OH/Pt ratio is necessary for achieving small-sized uniformly distributed Pt nanoparticles at high chemical yield. Simple adjustment of the pH value is not sufficient to control the reduction conditions since even small pH variations give rise to significant changes of the catalyst properties. The optimal OH/Pt molar ratio was found to be 5:1 resulting in small particle size (ca. 2.5 nm in diameter) and high platinum loading (ca. 39 wt% at a nominal loading of 40 wt%). Moreover, we have shown that the developed electrocatalyst exhibits a high activity toward the oxygen reduction reaction which is confirmed by half-cell experiments in a rotating disk electrode and in single-cell experiments in direct methanol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Shao, G. Yin, J. Wang, Y. Gao, P. Shi, J Electrochem Soc 153, A1261 (2006)

    Article  CAS  Google Scholar 

  2. S.L. Knupp, W. Li, O. Paschos, T.M. Murray, J. Snyder, P. Haldar, Carbon 46, 1276 (2008)

    Article  CAS  Google Scholar 

  3. K. Lee, J. Zhang, H. Wang, D.P. Wilkinson, J Appl Electrochem 36, 507 (2006)

    Article  CAS  Google Scholar 

  4. Z.W. Zhao, Z.P. Guo, J. Ding, D. Wexler, Z.F. Ma, D.Y. Zhang, H.K. Liu, Electrochem Commun 8, 245 (2006)

    Article  CAS  Google Scholar 

  5. Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, Q. Xin, Chem Commun 394, (2003)

  6. F. Alcaide, G. Álvarez, O. Miguel, M.J. Lázaro, R. Moliner, A. López-Cudero, J. Solla-Gullón, E. Herrero, A. Aldaz, Electrochem Commun 11, 1081 (2009)

    Article  CAS  Google Scholar 

  7. A. Schlange, A.R. dos Santos, U. Kunz, T. Turek, Beilstein, J Org Chem 7, 1412 (2011)

    CAS  Google Scholar 

  8. P. Ehrburger, Adv Colloid Interface Sci 21, 275 (1984)

    Article  CAS  Google Scholar 

  9. J. Chen, M. Wang, B. Liu, Z. Fan, K. Cui, Y. Kuang, J Phys Chem B 110, 11775 (2006)

    Article  CAS  Google Scholar 

  10. X. Wang, M. Waje, Y. Yan, Electrochem Solid-State Lett 8, A42 (2005)

    Article  CAS  Google Scholar 

  11. R. Yu, L. Chen, Q. Liu, J. Lin, K.-L. Tan, S.C. Ng, H.S.O. Chan, G.-Q. Xu, T.S.A. Hor, Chem Mater 10, 718 (1998)

    Article  CAS  Google Scholar 

  12. J.F. Lin, V. Kamavaram, A.M. Kannan, J Power Sources 195, 466 (2010)

    Article  CAS  Google Scholar 

  13. L. Xiong, A. Manthiram, Solid State Ionics 176, 385 (2005)

    Article  CAS  Google Scholar 

  14. M. Soehn, S. Zils, N. Nicoloso, C. Roth, J Power Sources 196, 6079 (2011)

    Article  CAS  Google Scholar 

  15. H. Kim, J. Lee, J. Kim, J Power Sources 180, 191 (2008)

    Article  CAS  Google Scholar 

  16. C. Bock, C. Paquet, M. Couillard, G.A. Botton, B.R. MacDougall, J Am Chem Soc 126, 8028 (2004)

    Article  CAS  Google Scholar 

  17. X. Li, W.-X. Chen, J. Zhao, W. Xing, Z.-D. Xu, Carbon 43, 2168 (2005)

    Article  CAS  Google Scholar 

  18. Y. Xing, J Phys Chem B 108, 19255 (2004)

    Article  CAS  Google Scholar 

  19. J. Yang, T.C. Deivaraj, H.-P. Too, J.Y. Lee, Langmuir 20, 4241 (2004)

    Article  CAS  Google Scholar 

  20. Y. Li, L. Zheng, S. Liao, J. Zeng, J Power Sources 196, 10570 (2011)

    Article  CAS  Google Scholar 

  21. T. Herricks, J. Chen, Y. Xia, Nano Lett 4, 2367 (2004)

    Article  CAS  Google Scholar 

  22. H. Oh, J. Oh, Y. Hong, H. Kim, Electrochim Acta 52, 7278 (2007)

    Article  CAS  Google Scholar 

  23. L. Ren, Y. Xing, Electrochim Acta 53, 5563 (2008)

    Article  CAS  Google Scholar 

  24. Y. Wang, J. Ren, K. Deng, L. Gui, Y. Tang, Chem Mater 12, 1622 (2000)

    Article  CAS  Google Scholar 

  25. F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin, M. Figlarz, Solid State Ionics 32/33, 198 (1989)

    Article  Google Scholar 

  26. M. Sakthivel, A. Schlange, U. Kunz, T. Turek, J Power Sources 195, 7083 (2010)

    Article  CAS  Google Scholar 

  27. U. Kunz, T. Turek, Beilstein, J Org Chem 5, 7 (2009)

    Google Scholar 

  28. Z. Peng, H. Yang, Nano Today 4, 143 (2009)

    Article  CAS  Google Scholar 

  29. A. Kloke, F. von Stetten, R. Zengerle, S. Kerzenmacher, Adv Mater 23, 4976 (2011)

    Article  CAS  Google Scholar 

  30. E.F. Holby, W. Sheng, Y. Shao-Horn, D. Morgan, Energ Environ Sci 2, 865 (2009)

    Article  CAS  Google Scholar 

  31. H. Wang, Electrochim Acta 47, 2981 (2002)

    Article  CAS  Google Scholar 

  32. C.B. Murray, C.R. Kagan, M.G. Bawendi, Annu Rev Mater Sci 30, 545 (2000)

    Article  CAS  Google Scholar 

  33. S. Kim, S.J. Park, Anal Chim Acta 619, 43 (2008)

    Article  CAS  Google Scholar 

  34. J.M. Kim, A. Patwardhan, A. Bott, D.H. Thompson, BBA-Biomembr 1617, 10 (2003)

    Article  CAS  Google Scholar 

  35. H. Oh, J. Oh, H. Kim, J Power Sources 183, 600 (2008)

    Article  CAS  Google Scholar 

  36. Lince 2.31d, Materialwissenschaften, TU Darmstadt, http://www.mawi.tu-darmstadt.de/naw/nawstartseite/service/software/sv_software.de.jsp, Accessed 01 June 2011

  37. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G.F. Wang, P.N. Ross, N.M. Markovic, Nat Mater 6, 241 (2007)

    Article  CAS  Google Scholar 

  38. Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Anal Chem 82, 6321 (2010)

    Article  CAS  Google Scholar 

  39. S.-A. Sheppard, S.A. Campbell, J.R. Smith, G.W. Lloyd, F.C. Walsh, T.R. Ralph, Analyst 123, 1923 (1998)

    Article  CAS  Google Scholar 

  40. P. Scherrer, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 26, 98 (1918)

    Google Scholar 

  41. J.W. Jung, C.Y. Kim, G.E. Jung, K.B. Shim, S.H. Jeong, S.C. Yi, J Ceram Process Res 12, 96 (2011)

    Google Scholar 

  42. K.J.J. Mayrhofer, B.B. Blizanac, M. Arenz, V.R. Stamenkovic, P.N. Ross, N.M. Markovic, J Phys Chem B 109, 14433 (2005)

    Article  CAS  Google Scholar 

  43. K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V.R. Stamenkovic, M. Arenz, N.M. Markovic, Electrochim Acta 53, 3181 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Energy Research Centre of Niedersachsen (Energie-Forschungszentrum Niedersachsen) for financial support of this work. The authors also would like to express their gratitude to the following persons and institutes at Clausthal University of Technology, Germany: Peggy Knospe at Particle Technology for TEM investigations, Ulrike Köcher at Technical Chemistry for TGA measurements, and Philipp Schlender at Inorganic and Analytical Chemistry for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Aoun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoun, N., Schlange, A., dos Santos, A.R. et al. Effect of the OH/Pt Ratio During Polyol Synthesis on Metal Loading and Particle Size in DMFC Catalysts. Electrocatalysis 7, 13–21 (2016). https://doi.org/10.1007/s12678-015-0275-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0275-9

Keywords

Navigation