Skip to main content
Log in

One-Pot Hydrothermal Synthesis of Reduced Graphene Oxide–Multiwalled Carbon Nanotubes Composite Material on Nickel Foam for Efficient Supercapacitor Electrode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The reduced graphene oxide/multiwalled carbon nanotubes deposited on nickel foam (rGO/MWCNTs/NF) composite material was successfully prepared using one-pot hydrothermal method. The prepared rGO/MWCNTs/NF composite material was characterized using scanning electron microscopy, electron dispersive spectroscopy, and Raman spectroscopy. The results show that MWCNTs were successfully incorporated into the graphene sheets uniformly. The rGO/MWCNTs/NF composite material was fabricated as electrode for supercapacitor application. The capacitive properties of the rGO/MWCNTs/NF composite material were studied using electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge in 1 M KOH aqueous electrolyte solution. The rGO/MWCNTs/NF electrode showed enhanced capacitance compared to rGO/NF, MWCNTs/NF, and bare NF electrodes due to high surface area and more accessibility of electrolyte after the addition of MWCNTs to the rGO/NF electrode. The rGO/MWCNTs/NF composite material shows specific capacitance of 81.14 F g−1 at current density of 1 A g−1 and excellent cycling stability with 83 % of its initial capacitance after 1000 charge/discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B.E. Conway (ed.), Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Plenum Publishers, New York, 1999)

    Google Scholar 

  2. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498 (2008)

    Article  CAS  Google Scholar 

  3. A. Burke, J. Power Sources 91, 37 (2000)

    Article  CAS  Google Scholar 

  4. R. Kotz, M. Carlen, Electrochim. Acta 45, 2483 (2000)

    Article  CAS  Google Scholar 

  5. L. Lai, H. Yang, L. Wang, B.K. Teh, J. Zhong, H. Chou, L. Chen, W. Chen, Z. Shen, R.S. Ruoff, J. Lin, ACS Nano 6, 5941 (2012)

    Article  CAS  Google Scholar 

  6. L.L. Zhang, X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009)

    Article  CAS  Google Scholar 

  7. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)

    Article  CAS  Google Scholar 

  8. M. Grdeń, M. Alsabet, G. Jerkiewicz, ACS Appl. Mater. Interfaces 4, 3012 (2012)

    Article  Google Scholar 

  9. J. Drunen, B. Kinkead, M.C.P. Wang, E. Sourty, B.D. Gates, G. Jerkiewicz, ACS Appl. Mater. Interfaces 5, 6712 (2013)

    Article  Google Scholar 

  10. Y.-L. Wang, Y.-Q. Zhao, C.-L. Xu, J. Solid State Electrochem. 16, 829 (2012)

    Article  CAS  Google Scholar 

  11. M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrocatalysis 6, 60 (2015)

    Article  CAS  Google Scholar 

  12. S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, J. Mater. Chem. 22, 767 (2012)

    Article  CAS  Google Scholar 

  13. Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Nano Energy 1, 107 (2012)

    Article  CAS  Google Scholar 

  14. H.-J. Choi, S.-M. Jung, J.-M. Seo, D.W. Chang, L. Dai, J.-B. Baek, Nano Energy 1, 534 (2012)

    Article  CAS  Google Scholar 

  15. D.R. Dreyer, R.S. Ruoff, C.W. Bielawski, Angew. Chem. Int. Ed. 49, 9336 (2010)

    Article  CAS  Google Scholar 

  16. S. Jayabal, P. Viswanathan, R. Ramaraj, RSC Adv. 4, 33541 (2014)

    Article  CAS  Google Scholar 

  17. R.R. Salunkhe, Y.-H. Lee, K.-H. Chang, J.-M. Li, P. Simon, J. Tang, N.L. Torad, C.-C. Hu, Y. Yamauchi, Chem. Eur. J. 20, 13838 (2014)

    Article  CAS  Google Scholar 

  18. W. Deng, X. Ji, M. Gomez-Mingot, F. Lu, Q. Chena, C.E. Banks, Chem. Commun. 48, 2770 (2012)

    Article  CAS  Google Scholar 

  19. M. Pumera, Energy Environ. Sci. 4, 668 (2011)

    Article  CAS  Google Scholar 

  20. X. Cao, Z. Yin, H. Zhang, Energy Environ. Sci. 7, 1850 (2014)

    Article  CAS  Google Scholar 

  21. S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, J. Chem. Sci 120, 9 (2008)

    Article  CAS  Google Scholar 

  22. L.L. Zhang, R. Zhou, X.S. Zhao, J. Mater. Chem. 20, 5983 (2010)

    Article  CAS  Google Scholar 

  23. X. Fan, T. Chen, L. Dai, RSC Adv. 4, 36996 (2014)

    Article  CAS  Google Scholar 

  24. Y. Zhang, M. Ma, J. Yang, W. Huang, X. Dong, RSC Adv. 4, 8466 (2014)

    Article  CAS  Google Scholar 

  25. D.A.C. Brownson, D.K. Kampouris, C.E. Banks, J. Power Sources 196, 4873 (2011)

    Article  CAS  Google Scholar 

  26. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157, 11 (2006)

    Article  CAS  Google Scholar 

  27. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Phys. Chem. Chem. Phys. 13, 17615 (2011)

    Article  CAS  Google Scholar 

  28. X. Lu, H. Dou, B. Gao, C. Yuan, S. Yang, L. Hao, L. Shen, X. Zhang, Electrochim. Acta 56, 5115 (2011)

    Article  CAS  Google Scholar 

  29. L. Buglione, M. Pumera, Electrochem. Commun. 17, 45 (2012)

    Article  CAS  Google Scholar 

  30. L.-Y. Lin, M.-H. Yeh, J.-T. Tsai, Y.-H. Huang, C.-L. Sun, K.-C. Ho, J. Mater. Chem. A 1, 11237 (2013)

    Article  CAS  Google Scholar 

  31. N. Huang, D.W. Kirk, S.J. Thorpe, C. Liang, L. Xu, W. Li, S. Zhang, M. Sun, Int. J. Energy Res (2015). doi:10.1002/er.3246

    Google Scholar 

  32. C. Yang, J. Shen, C. Wang, H. Fei, H. Bao, G. Wang, J. Mater. Chem. A 2, 1458 (2014)

    Article  CAS  Google Scholar 

  33. Y. Bai, M. Du, J. Chang, J. Sun, L. Gao, J. Mater. Chem. A 2, 3834 (2014)

    Article  CAS  Google Scholar 

  34. J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, J. Power Sources 195, 3041 (2010)

    Article  CAS  Google Scholar 

  35. F. Zeng, Y. Kuang, N. Zhang, Z. Huang, Y. Pan, Z. Hou, H. Zhou, C. Yan, O.G. Schmidt, J. Power Sources 247, 396 (2014)

    Article  CAS  Google Scholar 

  36. Y. Cheng, S. Lu, H. Zhang, C.V. Varanasi, J. Liu, Nano Lett. 12, 4206 (2012)

    Article  CAS  Google Scholar 

  37. D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, Nat. Nanotechnol. 9, 555 (2014)

    Article  CAS  Google Scholar 

  38. Y. Zhou, N. Lachman, M. Ghaffari, H. Xu, D. Bhattacharya, P. Fattahi, M.R. Abidian, S. Wu, K.K. Gleason, B.L. Wardle, Q.M. Zhang, J. Mater. Chem. A 2, 9964 (2014)

    Article  CAS  Google Scholar 

  39. F. Wen, C. Hao, J. Xiang, L. Wang, H. Hou, Z. Su, W. Hu, Z. Liu, Carbon 75, 236 (2014)

    Article  CAS  Google Scholar 

  40. J. Shen, C. Yang, X. Li, G. Wang, ACS Appl. Mater. Interfaces 5, 8467 (2013)

    Article  CAS  Google Scholar 

  41. Q. Cheng, J. Tang, N. Shinya, L.-C. Qin, J. Power Sources 241, 423 (2013)

    Article  CAS  Google Scholar 

  42. M.D. Stoller, R.S. Ruoff, Energy Environ. Sci. 3, 1294 (2010)

    Article  CAS  Google Scholar 

  43. V. Khomenko, E. Frackowiak, F. Beguin, Electrochim. Acta 50, 2499 (2005)

    Article  CAS  Google Scholar 

  44. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  45. H.N. Lim, N.M. Huang, S.S. Lim, I. Harrison, C.H. Chia, Int. J. Nanomedicine 6, 1817 (2011)

    Article  CAS  Google Scholar 

  46. F. Bao, X. Wang, X. Zhao, Y. Wang, Y. Ji, H. Zhang, X. Liu, RSC Adv. 4, 2393 (2014)

    Article  CAS  Google Scholar 

  47. L. Li, J. Xu, J. Lei, J. Zhang, F. McLarnon, Z. Wei, N. Li, F. Pan, J. Mater. Chem. A 3, 1953 (2015)

    Article  CAS  Google Scholar 

  48. X. Dong, B. Li, A. Wei, X. Cao, M.B. Chan-Park, H. Zhang, L.-J. Li, W. Huang, P. Chen, Carbon 49, 2944 (2011)

    Article  CAS  Google Scholar 

  49. S.-C. Hong, S. Kim, W.-J. Jang, T.-H. Han, J.-P. Hong, J.-S. Oh, T. Hwang, Y. Lee, J.-H. Lee, J.-D. Nam, RSC Adv. 4, 48276 (2014)

    Article  CAS  Google Scholar 

  50. G. Zhu, Z. He, J. Chen, J. Zhao, X. Feng, Y. Ma, Q. Fan, L. Wang, W. Huang, Nanoscale 6, 1079 (2014)

    Article  CAS  Google Scholar 

  51. Q. Ke, Y. Liu, H. Liu, Y. Zhang, Y. Hu, J. Wang, RSC Adv. 4, 26398 (2014)

    Article  CAS  Google Scholar 

  52. Y. Luo, H. Zhang, D. Guo, J. Ma, Q. Li, L. Chen, T. Wang, Electrochim. Acta 132, 332 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a University of Malaya Research Grant UMRG Programme (RP007C/13AFR), the Science Fund from the Ministry of Science, Technology and Innovation (06-01-04-SF1513), and a High Impact Research Grant from the Ministry of Higher Education of Malaysia (UM.C/625/1/HIR/MOHE/05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nay Ming Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, F.Y., Jayabal, S., Pandikumar, A. et al. One-Pot Hydrothermal Synthesis of Reduced Graphene Oxide–Multiwalled Carbon Nanotubes Composite Material on Nickel Foam for Efficient Supercapacitor Electrode. Electrocatalysis 6, 373–381 (2015). https://doi.org/10.1007/s12678-015-0254-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0254-1

Keywords

Navigation