Skip to main content
Log in

CO2 Electroreduction on Cu-Modified Platinum Single Crystal Electrodes in Aprotic Media

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Techniques of electrode modification by copper deposits are developed that allow obtaining compact bulk quasi-epitaxial deposits on basal Pt(hkl) single crystal faces. The issues of the deposit roughness and characterization are discussed. Problems of drying and transferring electrodes with copper deposits into other solutions are considered. The obtained deposits are used for CO2 electroreduction in propylene carbonate and acetonitrile solutions of 0.1 M TBAPF6, and the relationship between the electrode surface structure and its electrocatalytic activity in CO2 electroreduction is discussed. We also demonstrate that the restructuring of Cu deposits occurs upon CO2 electroreduction. Complementary reactivity studies are presented for bare Pt(hkl) and Cu(hkl) single crystal electrodes. Cu-modified Pt(hkl) electrodes display the highest activity as compared to bare Pt(hkl) and Cu(hkl). Particularly, the Cu/Pt(110) electrode shows the highest activity among the electrodes under study. Such high activity of Cu/Pt(hkl) electrodes can be explained not only by the increasing actual surface area but also by structural effects, namely by the presence of a large amount of specific defect sites (steps, kinks) on Cu crystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Jitaru, J. Univ. Chem. Technol. Metall. 42, 333–344 (2007)

    CAS  Google Scholar 

  2. Y. Hori, in Modern Aspects of Electrochemistry, ed. by C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Springer New York, New York, 2008), pp. 89–189

  3. M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem. 594, 1–19 (2006)

    Article  CAS  Google Scholar 

  4. J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 43, 631–675 (2014)

    Article  CAS  Google Scholar 

  5. N. Hoshi, E. Sato, Y. Hori, J. Electroanal. Chem. 540, 105–110 (2003)

    Article  CAS  Google Scholar 

  6. N. Hoshi, M. Kuroda, Y. Hori, J. Electroanal. Chem. 521, 155–160 (2002)

    Article  CAS  Google Scholar 

  7. I. Takahashi, O. Koga, N. Hoshi, Y. Hori, J. Electroanal. Chem. 533, 135–143 (2002)

    Article  CAS  Google Scholar 

  8. Y. Hori, I. Takahashi, O. Koga, N. Hoshi, J. Mol. Catal. A Chem. 199, 39–47 (2003)

    Article  CAS  Google Scholar 

  9. N.M. Markovic, P.N. Ross, Surf. Sci. Rep. 45, 117–229 (2002)

    Article  CAS  Google Scholar 

  10. E.B. Molodkina, M.R. Ehrenburg, Y.M. Polukarov, A.I. Danilov, J. Souza-Garcia, J.M. Feliu, Electrochim. Acta 56, 154–165 (2010)

    Article  CAS  Google Scholar 

  11. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 39, 1833–1839 (1994)

    Article  CAS  Google Scholar 

  12. A.S. Varela, C. Schlaup, Z.P. Jovanov, P. Malacrida, S. Horch, I.E.L. Stephens, I. Chorkendorff, J. Phys. Chem. C 117, 20500–20508 (2013)

    Article  CAS  Google Scholar 

  13. R. Reske, M. Duca, M. Oezaslan, K.J.P. Schouten, M.T.M. Koper, P. Strasser. J. Phys. Chem. Lett. 2410–2413 (2013)

  14. M. Anouti, Y.R. Dougassa, C. Tessier, L. El Ouatani, J. Jacquemin, J. Chem. Thermodyn. 50, 71–79 (2012)

    Article  CAS  Google Scholar 

  15. J. Clavilier, D. Armand, S.G. Sun, M. Petit, J. Electroanal. Chem. Interfacial Electrochem. 205, 267–277 (1986)

    Article  CAS  Google Scholar 

  16. J. Clavilier, R. Faure, G. Guinet, R. Durand, J. Electroanal. Chem. Interfacial Electrochem. 107, 205–209 (1979)

    Article  Google Scholar 

  17. J. Clavilier, J. Electroanal. Chem. Interfacial Electrochem. 107, 211–216 (1979)

    Article  Google Scholar 

  18. J. Clavilier, in Interfacial electrochemistry: theory, experimental, and applications, ed. by A. Wieckowski (Marcel Dekker, New York, 1999), pp. 231–248

    Google Scholar 

  19. A.V. Rudnev, E.B. Molodkina, M.R. Ehrenburg, R.G. Fedorov, A.I. Danilov, Y.M. Polukarov, J.M. Feliu, Russ. J. Electrochem. 45, 1052–1063 (2009)

    Article  CAS  Google Scholar 

  20. I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)

    Article  CAS  Google Scholar 

  21. A.I. Danilov, E.B. Molodkina, A.V. Rudnev, Y.M. Polukarov, J.M. Feliu, Electrochim. Acta 50, 5032–5043 (2005)

    Article  CAS  Google Scholar 

  22. M.S. Zei, Z. Phys. Chem. Int. J. Res. Phys. Chem. Chem. Phys. 208, 77–91 (1999)

    CAS  Google Scholar 

  23. C.H. Shue, S.L. Yau, J. Phys. Chem. B 105, 5489–5496 (2001)

    Article  CAS  Google Scholar 

  24. O. Endo, N. Ikemiya, M. Ito, Surf. Sci. 514, 234–240 (2002)

    Article  CAS  Google Scholar 

  25. R. Francke, V. Climent, H. Baltruschat, J.M. Feliu, J. Electroanal. Chem. 624, 228–240 (2008)

    Article  CAS  Google Scholar 

  26. A.I. Danilov, E.B. Molodkina, Y.M. Polukarov, V. Climent, J.M. Feliu, Electrochim. Acta 46, 3137–3145 (2001)

    Article  CAS  Google Scholar 

  27. A.I. Danilov, E.B. Molodkina, Y.M. Polukarov, Russ. J. Electrochem. 36, 987–997 (2000)

    Article  CAS  Google Scholar 

  28. A.V. Rudnev, E.B. Molodkina, A.I. Danilov, Y.M. Polukarov, J.M. Feliu, Russ. J. Electrochem. 42, 381–392 (2006)

    Article  CAS  Google Scholar 

  29. S. Ikeda, T. Takagi, K. Ito, Bull. Chem. Soc. Jpn. 60, 2517–2522 (1987)

    Article  CAS  Google Scholar 

  30. Y. Tomita, Y. Hori, in Stud. Surf. Sci. Catal., ed. by T. Inui, M. Anpo, K. Izui, S. Yanagida, T. Yamaguchi (Elsevier, 1998), pp. 581–584

  31. Y. Tomita, S. Teruya, O. Koga, Y. Hori, J. Electrochem. Soc. 147, 4164–4167 (2000)

    Article  CAS  Google Scholar 

  32. A.V. Rudnev, T. Wandlowski, Russ. J. Electrochem. 48, 259–270 (2012)

    Article  CAS  Google Scholar 

  33. C. Schlaup, S. Horch, Phys. Chem. Chem. Phys. 15, 19659–19664 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the EraNet program (ECOON, project No 156), by Russian Foundation for Basic Research (project No 12-03-91655-ERA) and by the University of Bern. A.R. also acknowledges the support by the CTI Swiss Competence Center for Energy Research (SCCER Heat and Electricity Storage).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander V. Rudnev or Maria R. Ehrenburg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.95 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudnev, A.V., Ehrenburg, M.R., Molodkina, E.B. et al. CO2 Electroreduction on Cu-Modified Platinum Single Crystal Electrodes in Aprotic Media. Electrocatalysis 6, 42–50 (2015). https://doi.org/10.1007/s12678-014-0217-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0217-y

Keywords

Navigation