Skip to main content
Log in

The Influence of the Cation on the Oxygen Reduction and Evolution Activities of Oxide Surfaces in Alkaline Electrolyte

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Understanding the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) mechanisms is critical to the design of future electrocatalysts for fuel cells, electrolyzers, and metal–air batteries. As parts of the effort to elucidate the reaction mechanisms, we report the influence of the cationic species on the ORR/OER activity of select transition metal oxide catalysts in alkaline solutions. Specifically, we use Li+, Na+, and K+-containing electrolytes to assess the role of the cation on the ORR activity of Pt nanoparticles and LaMnO3+δ, as well as the OER activity of rutile IrO2 and Ba0.5Sr0.5Co0.8Fe0.2O3-δ. We found that all these benchmark electrocatalysts share the same cation trends, where the presence of the smaller cation (Li+) always leads to lower activity. We argue that this finding represents the possible cation influence on the ORR/OER intermediate stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  1. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal., B 56, 9–35 (2005)

    Google Scholar 

  2. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Chem Rev 110, 6474–6502 (2010)

    Article  CAS  Google Scholar 

  3. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Chem Rev 110, 6446–6473 (2010)

    Article  CAS  Google Scholar 

  4. H. Dotan, K. Sivula, M. Gratzel, A. Rothschild, S.C. Warren, Energy Environ. Sci. 4, 958–964 (2011)

    Article  CAS  Google Scholar 

  5. M. Armand, J.M. Tarascon, Nature 451, 652–657 (2008)

    Article  CAS  Google Scholar 

  6. J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108, 17886–17892 (2004)

    Article  CAS  Google Scholar 

  7. J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Norskov, J. Electroanal. Chem. 607, 83–89 (2007)

    Article  CAS  Google Scholar 

  8. I.C. Man, H.Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martinez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Norskov, J. Rossmeisl, Chem. Cat. Chem. 3, 1159–1165 (2011)

    CAS  Google Scholar 

  9. J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Norskov, Nature Chem. 1, 552–556 (2009)

    Article  CAS  Google Scholar 

  10. I.E.L. Stephens, A.S. Bondarenko, F.J. Perez-Alonso, F. Calle-Vallejo, L. Bech, T.P. Johansson, A.K. Jepsen, R. Frydendal, B.P. Knudsen, J. Rossmeisl, I. Chorkendorff, J. Am, Chem. Soc. 133, 5485–5491 (2011)

    Article  CAS  Google Scholar 

  11. J. Rossmeisl, E. Skulason, M.E. Bjorketun, V. Tripkovic, J.K. Norskov, Chem. Phys. Lett. 466, 68–71 (2008)

    Article  CAS  Google Scholar 

  12. D. Strmcnik, K. Kodama, D. van der Vliet, J. Greeley, V.R. Stamenkovic, N.M. Markovic, Nature Chem. 1, 466–472 (2009)

    Article  CAS  Google Scholar 

  13. D. Strmcnik, D.F. van der Vliet, K.C. Chang, V. Komanicky, K. Kodama, H. You, V.R. Stamenkovic, N.M. Markovic, J. Phys. Chem. Lett. 2, 2733–2736 (2011)

    Article  CAS  Google Scholar 

  14. J.X. Wang, N.M. Markovic, R.R. Adzic, J. Phys. Chem. B 108, 4127–4133 (2004)

    Article  CAS  Google Scholar 

  15. S. Thomas, Y.E. Sung, H.S. Kim, A. Wieckowski, J. Phys. Chem. 100, 11726–11735 (1996)

    Article  CAS  Google Scholar 

  16. Q.G. He, X.F. Yang, W. Chen, S. Mukerjee, B. Koel, S.W. Chen, Phys. Chem. Chem. Phys. 12, 12544–12555 (2010)

    Article  CAS  Google Scholar 

  17. K. Kajii, T. Ohsaka, F. Kitamura, Electrochem. Commun. 12, 970–972 (2010)

    Article  CAS  Google Scholar 

  18. J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Nature. Chem. 3, 546–550 (2011)

    Article  CAS  Google Scholar 

  19. J. Suntivich, H.A. Gasteiger, N. Yabuuchi, Y. Shao-horn, J. Electrochem. Soc. 157 (2010)

  20. J. Suntivich, K.J. May, J.B. Goodenough, H.A. Gasteiger, Y. Shao-Horn, Science 334, 1383–1385 (2011)

    Article  CAS  Google Scholar 

  21. D. Strmcnik, M. Escudero-Escribano, K. Kodama, V.R. Stamenkovic, A. Cuesta, N.M. Markovic, Nature Chem. 2, 880–885 (2010)

    Article  CAS  Google Scholar 

  22. M. Yuasa, M. Nishida, T. Kida, N. Yamazoe, K. Shimanoe, J. Electrochem. Soc. 158, A605–A610 (2011)

    Article  CAS  Google Scholar 

  23. M. Yuasa, N. Yamazoe, K. Shimanoe, J. Electrochem. Soc. 158, A411–A416 (2011)

    Article  CAS  Google Scholar 

  24. S. Trasatti, J. Electroanal. Chem. 111, 125–131 (1980)

    Article  CAS  Google Scholar 

  25. Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 399–404 (2012)

  26. S. Chen, W.C. Sheng, N. Yabuuchi, P.J. Ferreira, L.F. Allard, Y. Shao-Horn, J. Phys. Chem. C 113, 1109–1125 (2009)

    Article  CAS  Google Scholar 

  27. U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm, J. Electroanal. Chem. 495, 134–145 (2001)

    Article  CAS  Google Scholar 

  28. R. Subbaraman, D. Strmcnik, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, Chem. Phys. Chem. 11, 2825–2833 (2010)

    Article  CAS  Google Scholar 

  29. R. Subbaraman, D. Strmcnik, V. Stamenkovic, N.M. Markovic, J. Phys. Chem. C 114, 8414–8422 (2010)

    Article  CAS  Google Scholar 

  30. J.O. Bockris, T. Otagawa, J. Phys. Chem. 87, 2960–2971 (1983)

    Article  CAS  Google Scholar 

  31. J.O. Bockris, T. Otagawa, J. Electrochem. Soc. 131, 290–302 (1984)

    Article  CAS  Google Scholar 

  32. J.B. Goodenough, R. Manoharan, M. Paranthaman, J. Am, Chem. Soc. 112, 2076–2082 (1990)

    Article  CAS  Google Scholar 

  33. B. Hribar, N.T. Southall, V. Vlachy, K.A. Dill, J. Am, Chem. Soc. 124, 12302–12311 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the U.S. Department of Energy Hydrogen Initiative program under award DE-FG02-05ER15728. J.S. would like to acknowledge Ziff Environmental Fellowship from the Harvard University Center for the Environment. E. E. P. was supported by John Reed Scholarship from the Undergraduate Research Opportunities Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Suntivich or Yang Shao-Horn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suntivich, J., Perry, E.E., Gasteiger, H.A. et al. The Influence of the Cation on the Oxygen Reduction and Evolution Activities of Oxide Surfaces in Alkaline Electrolyte. Electrocatalysis 4, 49–55 (2013). https://doi.org/10.1007/s12678-012-0118-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-012-0118-x

Keywords

Navigation