Skip to main content
Log in

Effect of pH on Size and Antibacterial Activity of Salvadora oleoides Leaf Extract-Mediated Synthesis of Zinc Oxide Nanoparticles

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Green synthesis of metal nanoparticles is an interesting issue of nanotechnology. In the present study, zinc oxide nanoparticles were synthesized using Salvadora oleoides leaf aqueous extract and effect of pH on formation of zinc oxide nanoparticles was evaluated. The formation of zinc oxide nanoparticles was characterized by various spectral analysis like UV–Vis spectroscopy, zeta potential measurements, TGA-DTA analysis, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy analysis. The pH affected some characterization parameters distinctly while others were not affected. pH affected the size of nanoparticles synthesized. Zinc oxide nanoparticles at pH 5 exhibited good broad spectrum of antibacterial activity as compared to pH 8. Though size and antibacterial activity were affected by pH, both are good as antibacterial agents. Hence, zinc oxide nanoparticles could be developed as antibacterial agents against a wide range of bacteria to control and prevent bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sindhura, K. S., Prasad, T. N. V. K. V., Selvam, P. P., & Hussain, O. M. (2014). Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzyme. Applied Nanoscience, 4, 819–827.

    Article  Google Scholar 

  2. Sharma, D., Sharma, S., Kaith, B. S., Rajput, J., & Kaur, M. (2011). Synthesis of ZnO nanoparticles using surfactant free in air and microwave method. Applied Surface Science, 257, 9661–9672.

    Article  Google Scholar 

  3. Shoeb, M., Singh, B. R., Khan, J. A., Khan, W., Singh, B. N., Singh, H. B., & Naqvi, A. H. (2013). ROS-dependent anticandidal activity of zinc oxide nanoparticles synthesized by using egg albumen as a biotemplate. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, 1–11.

    Google Scholar 

  4. Raghupathi, K. R., Koodali, R. T., & Manna, A. C. (2011). Size dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27, 4020–4028.

    Article  Google Scholar 

  5. Nagajyothi, P. C., Sreekath, T. V. M., Tettery, C. O., Jun, Y. I., & Mook, S. H. (2014). Characterization antibacterial, antioxidant and cytotoxic activities of ZnO nanoparticles using Coptidis rhizoma. Bioorganic & Medicinal Chemistry Letters, 24, 4208–4303.

    Article  Google Scholar 

  6. Salem, W., Leitner, D. R., Zingl, F. G., Schratter, G., Prassi, R., Goessler, W., et al. (2015). Antibacterial activity of silver and zinc nanoparticles against Vibrio cholera and enterotoxin Escherichia coli. International Journal of Medical Microbiology, 305, 85–95.

    Article  Google Scholar 

  7. Espitia, P. J. P., Soares, N. F. F., Coimbra, J. S. R., Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technology, 5, 1447–1464.

    Article  Google Scholar 

  8. Rekha, K., Nirmala, M., Nair, M. G., & Anukaliani, A. (2010). Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physcia B, 405, 3180–3185.

    Article  Google Scholar 

  9. Divyapriya, S., Sowmia, C., & Saaikala, S. (2014). Synthesis of zinc oxide nanoparticles and antimicrobial activity of Murraya koenigii. World Journal of Pharmacy and Pharmaceutical Sciences, 3(12), 1635–1645.

    Google Scholar 

  10. Padalia, H., Moteriya, P., & Chanda, S. (2015). Green synthesis of sliver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arabian Journal of Chemistry, 8, 732–741.

    Article  Google Scholar 

  11. Moteriya, P., & Chanda, S. (2014). Low cost and ecofriendly phytosynthesis of silver nanoparticles using Cassia roxburghii stem extract and its antimicrobial and antioxidant efficacy. American Journal of Advanced Drug Delivery, 2(4), 557–575.

    Google Scholar 

  12. Vidya, C., Hiremath, S., Chandraprabha, M. N., Antonyraj, M. A. L., Gopal, I. V., Jain, A., & Bansal, K. (2013). Green synthesis of ZnO nanoparticles by Calotropis gigantea. International Journal of Current Engineering and Technology, 1, 118–120.

    Google Scholar 

  13. Monica, R. C., & Cremonini, R. (2009). Nanoparticles and higher plants. Caryologia, 62(2), 161–165.

    Article  Google Scholar 

  14. Singh, S., Naresh, V., & Sharma, S. K. (2013). Isolation of novel phytoconstituents from the bark of Salvadora oleoides Decne. International Journal of Herbal Medicine, 1(2), 9–13.

    Google Scholar 

  15. Kumar, S., Dhankhar, S., Arya, V. P., Yadav, S., & Yadav, J. P. (2012). Antimicrobial activity of Salvadora oleoides Decne. against some microorganisms. Journal of Medicinal Plant Research, 6(14), 2754–2760.

    Google Scholar 

  16. Natubhai, P. M., Pandya, S. S., & Rabari, H. A. (2013). Anti-inflammatory activity of leaf extracts of Salvadora oleoides Decne. International Journal of Pharma and Biosciences, 4(1), 985–993.

    Google Scholar 

  17. Simonsen, H. T. (2001). In vitro screening of Indian medicinal plants for antiplasmodial activity. Journal of Ethnopharmacology, 74, 195–204.

    Article  Google Scholar 

  18. Perez, C., Paul, M., & Bazerque, P. (1990). An antibiotic assay by the agar well diffusion method. Acta Biologiae Medicine Experimentalis, 15, 113–115.

    Google Scholar 

  19. Akash, S., Kumar, S. S. S., & Dhamodhar, P. (2015). Inhibition of group a Streptococcus by green synthesized zinc oxide nanoparticles. International Journal of Pharma and Bio Sciences, 6(2), 85–98.

    Google Scholar 

  20. Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., et al. (2012). Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 90, 78–84.

    Article  Google Scholar 

  21. Suresh, D., Udayabhanu, Nethravathi, P. C., Lingaraju, K., Rajanaika, H., Sharma, S. C., & Nagabhushana, H. (2015). EGCG assisted green synthesis of ZnO nanopowders: photodegradative, antimicrobial and antioxidant activities. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 136, 1467–1474.

    Article  Google Scholar 

  22. Ramesh, M., Anbuvannan, M., & Viruthagiri, G. (2015). Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extracts and their activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 136, 864–870.

    Article  Google Scholar 

  23. Raliya, R., & Tarafdar, J. C. (2014). Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. International Nano Letters, 4(93), 1–10.

    Google Scholar 

  24. Sharma, D., Rajput, J., Kaith, B. S., Kaur, M., & Sharma, S. (2010). Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Film, 519, 1224–1229.

    Article  Google Scholar 

  25. Kairyte, K., Kadys, A., & Luksiene, Z. (2013). Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. Journal of Photochemistry and Photobiology B: Biology, 128, 78–84.

    Article  Google Scholar 

  26. Uddin, R., & Akrema. (2016). Extracellular synthesis of silver dimer nanoparticles using Callistemon viminalis (bottlebrush) extract and evaluation of their antibacterial activity. Spectroscopy Letter. doi:10.1080/00387010.2016.1140654.

    Google Scholar 

  27. Moteriya, P., & Chanda, S. (2016). Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic and genotoxic activities. Artificial cell Nanomedicine and Biotechnology. (In Press).

Download references

Acknowledgements

The authors thank the Department of Biosciences (UGC-CAS) for providing excellent research facilities. One of the authors Ms. Hemali Padalia is thankful to UGC-CAS, New Delhi, India for providing Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumitra Chanda.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padalia, H., Baluja, S. & Chanda, S. Effect of pH on Size and Antibacterial Activity of Salvadora oleoides Leaf Extract-Mediated Synthesis of Zinc Oxide Nanoparticles. BioNanoSci. 7, 40–49 (2017). https://doi.org/10.1007/s12668-016-0387-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0387-6

Keywords

Navigation