Skip to main content

Advertisement

Log in

Recombinant Plasmid DNA Construct Encoding Combination of vegf165 and bmp2 cDNAs Stimulates Osteogenesis and Angiogenesis In Vitro

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Though normally bone regenerates well, non-union, delayed union, or defective bone formation can occur. Since impaired healing is often caused by local trophic disorders, standard fracture management is often ineffective. Gene therapy is a promising field for bone engineering. We have created a recombinant plasmid construct encoding the genes for pro-angiogenic vascular endothelial growth factor 165A (VEGF165A) and pro-osteogenic bone morphogenetic protein 2 (BMP2) with kanamycin resistance (pBudKan-VEGF165A-BMP2). This plasmid has the potential for use in treatment of trauma and skeletal system disorders, especially in cases of low trophicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kayal, R. A., Tsatsas, D., Bauer, M. A., Allen, B., Al-Sebaei, M. O., Kakar, S., et al. (2014). Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. Journal of Bone and Mineral Research, 22(4), 560–568.

    Article  Google Scholar 

  2. Morshed, S. (2014). Current options for determining fracture union. Advances in Medicine. doi:10.1155/2014/708574.

    Google Scholar 

  3. Perlman, M. H., & Thordarson, D. B. (1999). Ankle fusion in a high risk population: an assessment of nonunion risk factors. Foot and Ankle International, 20(8), 491–496.

    Article  Google Scholar 

  4. Murphey, M. D., Foreman, K. L., Klassen-Fischer, M. K., Fox, M. G., Chung, E. M., Kransdorf, M. J. (2014). From the radiologic pathology archives imaging of osteonecrosis: radiologic-pathologic correlation. Radiographics, 34(4), 1003–1028.

    Article  Google Scholar 

  5. Reddi, A. H. (1994). Bone and cartilage differentiation. Current Opinion in Genetics and Development, 4, 737–744.

    Article  Google Scholar 

  6. Lo, K. W.-H., Ulery, B. D., Ashe, K. M., Laurencin, C. T. (2016). Studies of bone morphogenetic protein based surgical repair. Advanced Drug Delivery Reviews, 64(12), 1277–1291.

    Article  Google Scholar 

  7. Xiao, C., Zhou, H., Liu, G., Zhang, P., Fu, Y., Gu, P., et al. (2011). Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration. Biomedical Materials, 6(1), 015013.

    Article  Google Scholar 

  8. Bao, P., Kodra, A., Tomic-Canic, M., Golinko, M. S., Ehrlich, H. P., Brem, H. (2009). The role of vascular endothelial growth factor in wound healing. The Journal of Surgical Research, 153(2), 347–358.

    Article  Google Scholar 

  9. Kanczler, J. M., & Oreffo, R. O. (2008). Osteogenesis and angiogenesis: the potential for engineering bone. European Cells & Materials, 15, 100–114.

    Article  Google Scholar 

  10. Masgutov RF, Bozo IY, Rizvanov AA, Isaev AA, Bogov AA, Bogov AA J, Deev RV, Salafutdinov II, Plaksa IL (2014) Codon-optimized recombinant plasmid, method of peripheral nerve regeneration, method of treatment of human injured nerve. Russian Federation patent RU 2 558 294 C1.

  11. Declercq, H., Van den Vreken, N., De Maeyer, E., Verbeeck, R., Schacht, E., De Ridder, L., et al. (2004). Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials, 25(5), 757–768.

    Article  Google Scholar 

  12. Katina, M. N., Gaifullina, R. F., Hayatova, Z. G., Emene, C. C., Rizvanov, A. A. (2012). Isolation, culture and differentiation of rat (Rattus norvegicus) and hamster (Mesocricetus auratus) adipose derived multipotent stem cells. Genes and Cells, 7(3), 82–87.

    Google Scholar 

  13. Chen, S. M., Ward, S. I., Olutoye, O. O., Diegelmann, R. F., Kelman Cohen, I. (1997). Ability of chronic wound fluids to degrade peptide growth factors is associated with increased levels of elastase activity and diminished levels of proteinase inhibitors. Wound Repair and Regeneration, 5(1), 23–32.

    Article  Google Scholar 

  14. Chira, S., Jackson, C. S., Oprea, I., et al. (2015). Progresses towards safe and efficient gene therapy vectors. Oncotarget, 6(31), 30675–30703.

    Google Scholar 

  15. Kempen, D. H., Lu, L., Heijink, A., Hefferan, T. E., Creemers, L. B., Maran, A., et al. (2009). Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials, 30(14), 2816–2825.

    Article  Google Scholar 

  16. Peng, H., Usas, A., Olshanski, A., Ho, A. M., Gearhart, B., Cooper, G. M., et al. (2005). VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. Journal of Bone and Mineral Research, 20(11), 2017–2027.

    Article  Google Scholar 

  17. Zelzer, E., & Olsen, B. R. (2005). Multiple roles of vascular endothelial growth factor (VEGF) in skeletal development, growth, and repair. Current Topics in Developmental Biology, 65, 169–187.

    Article  Google Scholar 

  18. Seamon, J., Wang, X., Cui, F., et al. (2013). Adenoviral delivery of the genes to rat mesenchymal stem cells potentiates osteogenesis. Bone Marrow Research. doi:10.1155/2013/737580.

    Google Scholar 

  19. Lin, Z., Wang, J.-S., Lin, L., et al. (2014). Effects of BMP2 and VEGF165 on the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Experimental and Therapeutic Medicine, 7(3), 625–629.

    Google Scholar 

  20. Stoll, S. M., & Calos, M. P. (2002). Extrachromosomal plasmid vectors for gene therapy. Current Opinion in Molecular Therapeutics, 4, 299–305.

    Google Scholar 

  21. Herweijer, H., Zhang, G., Subbotin, V. M., Budker, V., Williams, P., Wolff, J. A. (2001). Time course of gene expression after plasmid DNA gene transfer to the liver. The Journal of Gene Medicine, 3(3), 280–291.

    Article  Google Scholar 

  22. Herweijer, H., & Wolff, J. A. (2003). Progress and prospects: naked DNA gene transfer and therapy. Gene Therapy, 10(6), 453–458.

    Article  Google Scholar 

  23. Morrissey, D., Collins, S. A., Rajenderan, S., Casey, G., O’Sullivan, G. C., Tangney, M. (2013). Plasmid transgene expression in vivo: promoter and tissue variables (pp. 35–47). Rijeka: InTech.

    Google Scholar 

  24. Ghodadra, N., & Singh, K. (2008). Recombinant human bone morphogenetic protein-2 in the treatment of bone fractures. Biologics: Targets and Therapy , 2(3), 345–354.

    Google Scholar 

  25. Deev, R. V., Drobyshev, A. Y., Bozo, I. Y., Isaev, A. A. (2015). Ordinary and activated bone grafts: applied classification and the main features. BioMed Research International. doi:10.1155/2015/365050.

    Google Scholar 

  26. Huber, P. E., & Pfisterer, P. (2000). In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Therapy, 7(17), 1516–1525.

    Article  Google Scholar 

  27. DiFranco, M., Quinonez, M., Capote, J., Vergara, J. (2009). DNA transfection of mammalian skeletal muscles using in vivo electroporation. Journal of Visualized Experiments, 32, 1520.

    Google Scholar 

Download references

Acknowledgments

The work was performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities. Some of the experiments were conducted using the equipment of Interdisciplinary center for collective use of the Kazan Federal University, Interdisciplinary Center for Analytical Microscopy, and Pharmaceutical Research and Education Center, Kazan (Volga Region) Federal University, Kazan, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Rizvanov.

Ethics declarations

Conflict of Interest

The authors declare that they no conflicts of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Codon-optimized VEGF165A and BMP2 genes sequences. (PDF 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravleva, M.N., Khaliullin, M.R., Masgutov, R.F. et al. Recombinant Plasmid DNA Construct Encoding Combination of vegf165 and bmp2 cDNAs Stimulates Osteogenesis and Angiogenesis In Vitro. BioNanoSci. 7, 288–293 (2017). https://doi.org/10.1007/s12668-016-0300-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0300-3

Keywords

Navigation