Skip to main content
Log in

Memristive Biosensors for PSA-IgM Detection

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Prostate cancer is the most common cancer among men except for skin cancer, and the detection at early stages is crucial. In the present work, nanofabricated memristive biosensors are subjected to surface bio-modification targeting at prostate-specific antigen (PSA) IgM detection. The electrical response of the nanofabricated devices examined before and after the bio-modification achieves a label-free detection for three biomarker concentrations. The presence of biomolecules linked to the surface of the nanostructures is detected by a voltage gap appearing in the memristive electrical characteristics. Enzyme-linked immunosorbent assay methodology is further applied to verify the efficiency of the application of diverse biomarker concentrations on the surface. Scanning electron microscopy shows details on the morphology of the nanofabricated structures before and after the bio-modification, and confocal microscopy is implemented to obtain a 3D fluorescent signal distribution of the biomolecules. The system shows the potential for applications in molecular diagnostics and for implementation targeting at the early detection of the prostate cancer disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lacroix-Desmazes, S., Kaveri, S. V., Mouthon, L., Ayouba, A., Malanchere, E., Coutinho, A., et al. (1998). Self-reactive antibodies (natural autoantibodies) in healthy individuals. Journal of Immunological Methods, 216, 117–137.

    Article  Google Scholar 

  2. Varambally, S., Bar-Dayan, Y., Bayry, J., Lacroix-Desmazes, S., Horn, M., Sorel, M., et al. (2004). Natural human polyreactive IgM induce apoptosis of lymphoid cell lines and human peripheral blood mononuclear cells. International Immunology, 16, 517–524.

    Article  Google Scholar 

  3. Pontisso, P., Calabrese, F., Benvegnu, L., Lise, M., Belluco, C., Ruvoletto, M. G., et al. (2004). Overexpression of squamous cell carcinoma antigen variants in hepatocellular carcinoma. British Journal of Cancer, 90, 833–837.

    Article  Google Scholar 

  4. Beneduce, L., Castaldi, F., Marino, M., Tono, N., Gatta, A., Pontisso, P., et al. (2004). Improvement of liver cancer detection with simultaneous assessment of circulating levels of free alpha-fetoprotein (AFP) and AFP-IgM complexes. The International Journal of Biological Markers, 19, 155–159.

    Google Scholar 

  5. Beneduce, L., Castaldi, F., Marino, M., Quarta, S., Ruvoletto, M., Benvegnu, L., et al. (2005). Squamous cell carcinoma antigen IgM complexes as novel biomarkers for hepatocellular carcinoma. Cancer, 103, 2558–2565.

    Article  Google Scholar 

  6. Pontisso, P., Quarta, S., Caberlotto, C., Beneduce, L., Marino, M., Bernardinello, E., et al. (2006). Progressive increase of SCCAIgM immune complexes in cirrhotic patients is associated with development of hepatocellular carcinoma. International Journal of Cancer, 119, 735–740.

    Article  Google Scholar 

  7. Castaldi, F., Marino, M., Beneduce, L., Belluco, C., De Marchi, F., Mammano, E., et al. (2005). Detection of circulating CEAIgM complexes in early stage (stage 1) colorectal cancer. The International Journal of Biological Markers, 20, 204–208.

    Google Scholar 

  8. Goc, S., & Jankovic, M. (2013). Evaluation of molecular species of prostate-specific antigen complexed with immunoglobulin M in prostate cancer and benign prostatic hyperplasia. Disease Markers, 35(6), 847–855.

    Article  Google Scholar 

  9. Beneduce, L., Prayer-Galetti, T., Giustinian, A. M., Gallotta, A., Betto, G., Pagano, F., et al. (2007). Detection of prostate-specific antigen coupled to immunoglobulin M in prostate cancer patients. Cancer Detection and Prevention, 31(5), 402–7.

    Article  Google Scholar 

  10. Strukov, D., Snider, G., Stewart, D., Williams, S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  11. Chua, L. (1971). Memristor—the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.

    Article  Google Scholar 

  12. Wua, J., & Mc Creery, R. (2009). Solid-state electrochemistry in molecule/TiO2 molecular heterojunctions as the basis of the TiO2 memristor. Journal of the Electrochemical Society, 156(1), 29–37.

    Article  Google Scholar 

  13. Rose, G., Rajendran, J., Manem, H., Karri, R., Pino, R. (2012). Leveraging memristive systems in the construction of digital logic circuits. Proceedings of the IEEE, 100(6), 2033–2049.

    Article  Google Scholar 

  14. Pershin, Y., & Di Ventra, M. (2010). Experimental demonstration of associative memory with memristive neural networks. Neural Networks, 23(7), 881–886.

    Article  Google Scholar 

  15. Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., Prodromakis, T. (2013). Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology, 24, 384010.

    Article  Google Scholar 

  16. Gelencser, A., Prodromakis, T., Toumazou, C., Roska, T. (2012). Biomimetic model of the outer plexiform layer by incorporating memristive devices. Physical Review E, 85, 041918.

    Article  Google Scholar 

  17. Sacchetto, D., Gaillardon, P. E., Zervas, M., Carrara, S., De Micheli, G., Leblebici, Y. (2013). Applications of multi-terminal memristive devices: a review. IEEE Circuits and Systems, 13(2), 23–41.

    Article  Google Scholar 

  18. Gaillardon, P. E., Sacchetto, D., Bobba, S., Leblebici, Y. (2012). GMS: generic memristive structure for non-volatile FPGAs. Santa Cruz: IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC).

    Google Scholar 

  19. Sacchetto, D., Doucey, M. A., De Micheli, G., Leblebici, Y., Carrara, S. (2011). New insight on biosensing by nano-fabricated memristors. BioNanoScience, 1, 1–3.

    Article  Google Scholar 

  20. Carrara, S., Sacchetto, D., Doucey, M. A., Baj-Rossi, C., De Micheli, G., Leblebici, Y. (2012). Applications of multi-terminal memristive devices: a review. Sensors Actuators B: Chemical, 171–172, 449–457.

    Article  Google Scholar 

  21. Patolsky, F., Zheng, G., Lieber, C. M. (2006). Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nature Protocols, 1, 1711–1724.

    Article  Google Scholar 

  22. Zhou, X. T., Hu, J. Q., Li, C. P., Ma, D. D. D., Lee, S. T. (2003). Silicon nanowires as chemical sensors. Chemical Physics Letters, 369, 220–224.

    Article  Google Scholar 

  23. Janata, J., & Josowicz, M. (2003). Conducting polymers in electronic chemical sensors. Nature Materials, 2, 19–24.

    Article  Google Scholar 

  24. Zheng, G., Patolsky, F., Cuil, Y., Wang, W., Lieber, C. (2005). Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology, 23(3), 12941301.

    Google Scholar 

  25. Stern, E., Vacic, A., Mark, A. R. (2008). Semiconducting nanowire field effect transistor biomolecular sensors IEEE trans. Electronic Devices, 55(11), 31193130.

    Article  Google Scholar 

  26. Puppo, F., Dave, A., Doucey, M. A., Sacchetto, D., Baj-Rossi, C., Leblebici, Y., et al. (2014). Memristive biosensors under varying humidity conditions. IEEE Transactions on NanoBioscience, 13(1), 19–30.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the staff of the Cmi Clean Room of EPFL for assisting with technical advice and M. Zervas for the fruitful discussions regarding the fabrication process and G. Knott for the SEM imaging with ZEISS Gemini500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Tzouvadaki.

Additional information

The present work was financially supported by the project PROSENSE receiving funding from the European Union Horizon 2020 research and innovation program under the grant agreement no 317420

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzouvadaki, I., Parrozzani, C., Gallotta, A. et al. Memristive Biosensors for PSA-IgM Detection. BioNanoSci. 5, 189–195 (2015). https://doi.org/10.1007/s12668-015-0179-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-015-0179-4

Keywords

Navigation