Skip to main content

Advertisement

Log in

Geometry–Force Control of Stem Cell Fate

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Tissue engineering requires tight control of stem cell function. Among many physical signals such as stretch and perfusion, geometrical cues have received much attention and have widely been recognized as an important factor in scaffold design. Here we review a variety of approaches that control stem cell fate at different levels of strictness, including micro-contact printing, microwells, direct cell printing, grooves, aligned micro-/nano-fibers, nanotubes, nanodots, hydrogel shape, and porous structure of scaffolds. Mechanical forces and signal transductions are discussed for cell shape regulated stem cell fate. Although many questions have yet to be resolved, geometry–force control is becoming an effective approach for the regulation of stem cell renewal and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926.

    Article  Google Scholar 

  2. Skalak, R., & Fox, C. F. (Eds.). (1998). Tissue Engineering: Proceeding of a workshop held at Granlibakken, Lake Tahoe, California. New York: Liss.

    Google Scholar 

  3. Frohlich, M., Grayson, W. L., Wan, L. Q., Marolt, D., Drobnic, M., Vunjak-Novakovic, G. (2008). Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Current Stem Cell Research & Therapy, 3(4), 254–264.

    Article  Google Scholar 

  4. Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 33(Suppl), 245–254.

    Article  Google Scholar 

  5. Guilak, F., Cohen, D. M., Estes, B. T., Gimble, J. M., Liedtke, W., Chen, C. S. (2009). Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 5(1), 17–26.

    Article  Google Scholar 

  6. Thompson, D. A. W. (1943). On growth and form. Cambridge: University Press.

    Google Scholar 

  7. Nogawa, H., Morita, K., Cardoso, W. V. (1998). Bud formation precedes the appearance of differential cell proliferation during branching morphogenesis of mouse lung epithelium in vitro. Developmental Dynamics, 213(2), 228–235.

    Article  Google Scholar 

  8. Mammoto, T., & Ingber, D. E. (2010). Mechanical control of tissue and organ development. Development, 137(9), 1407–1420.

    Article  Google Scholar 

  9. Patwari, P., & Lee, R. T. (2008). Mechanical control of tissue morphogenesis. Circulation Research, 103(3), 234–243.

    Article  Google Scholar 

  10. Ingber, D. E. (2006). Mechanical control of tissue morphogenesis during embryological development. The International Journal of Developmental Biology, 50(2–3), 255–266.

    Article  Google Scholar 

  11. Adamo, L., Naveiras, O., Wenzel, P. L., McKinney-Freeman, S., Mack, P. J., Gracia-Sancho, J., Suchy-Dicey, A., Yoshimoto, M., Lensch, M. W., Yoder, M. C., Garcia-Cardena, G., Daley, G. Q. (2009). Biomechanical forces promote embryonic haematopoiesis. Nature, 459(7250), 1131–1135.

    Article  Google Scholar 

  12. Hove, J. R., Koster, R. W., Forouhar, A. S., Acevedo-Bolton, G., Fraser, S. E., Gharib, M. (2003). Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature, 421(6919), 172–177.

    Article  Google Scholar 

  13. Auman, H. J., Coleman, H., Riley, H. E., Olale, F., Tsai, H. J., Yelon, D. (2007). Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biology, 5(3), e53.

    Article  Google Scholar 

  14. Stevens, M. M., & George, J. H. (2005). Exploring and engineering the cell surface interface. Science, 310(5751), 1135–1138.

    Article  Google Scholar 

  15. Ingber, D. E. (2006). Cellular mechanotransduction: putting all the pieces together again. The FASEB Journal, 20(7), 811–827.

    Article  Google Scholar 

  16. Hook, A. L., Voelcker, N. H., Thissen, H. (2009). Patterned and switchable surfaces for biomolecular manipulation. Acta Biomaterialia, 5(7), 2350–2370.

    Article  Google Scholar 

  17. Kolind, K., Leong, K. W., Besenbacher, F., Foss, M. (2012). Guidance of stem cell fate on 2D patterned surfaces. Biomaterials, 33(28), 6626–6633.

    Article  Google Scholar 

  18. Thery, M. (2010). Micropatterning as a tool to decipher cell morphogenesis and functions. Journal of Cell Science, 123(Pt 24), 4201–4213.

    Article  Google Scholar 

  19. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., Ingber, D. E. (1997). Geometric control of cell life and death. Science, 276(5317), 1425–1428.

    Article  Google Scholar 

  20. Kilian, K. A., Bugarija, B., Lahn, B. T., Mrksich, M. (2010). Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(11), 4872–4877.

    Article  Google Scholar 

  21. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 6(4), 483–495.

    Article  Google Scholar 

  22. Wan, L. Q., Kang, S. M., Eng, G., Grayson, W. L., Lu, X. L., Huo, B., Gimble, J., Guo, X. E., Mow, V. C., Vunjak-Novakovic, G. (2010). Geometric control of adult human stem cell morphology and differentiation. Integrative Biology, 2(7–8), 346–353.

    Article  Google Scholar 

  23. Vunjak-Novakovic, G. (2008). Patterning stem cell differentiation. Cell Stem Cell, 3(4), 362–363.

    Article  Google Scholar 

  24. Luo, W., Jones, S. R., Yousaf, M. N. (2008). Geometric control of stem cell differentiation rate on surfaces. Langmuir, 24(21), 12129–12133.

    Article  Google Scholar 

  25. Li, B., Li, F., Li, H.-X., Xu, X.-C., Szczodry, M., Yang, Z.-C., Lin, J.-S., Wang, J. H.-C. (2006). Cellular mechanical stress gradient regulates cell proliferation and differentiation patterns. Molecular & Cellular Biomechanics, 3(4), 225–227.

    Google Scholar 

  26. Ruiz, S. A., & Chen, C. S. (2008). Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells, 26(11), 2921–2927.

    Article  Google Scholar 

  27. Munoz-Pinto, D. J., Qu, X., Bansal, L., Hayenga, H. N., Hahn, J., Hahn, M. S. (2012). Relative impact of form-induced stress vs. uniaxial alignment on multipotent stem cell myogenesis. Acta Biomaterialia, 8(11), 3974–3981.

    Google Scholar 

  28. Hwang, Y. S., Chung, B. G., Ortmann, D., Hattori, N., Moeller, H. C., Khademhosseini, A. (2009). Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proceedings of the National Academy of Sciences of the United States of America, 106(40), 16978–16983.

    Article  Google Scholar 

  29. Moeller, H. C., Mian, M. K., Shrivastava, S., Chung, B. G., Khademhosseini, A. (2008). A microwell array system for stem cell culture. Biomaterials, 29(6), 752–763.

    Article  Google Scholar 

  30. Park, J., Cho, C. H., Parashurama, N., Li, Y., Berthiaume, F., Toner, M., Tilles, A. W., Yarmush, M. L. (2007). Microfabrication-based modulation of embryonic stem cell differentiation. Lab on a Chip, 7(8), 1018–1028.

    Article  Google Scholar 

  31. Karp, J. M., Yeh, J., Eng, G., Fukuda, J., Blumling, J., Suh, K. Y., Cheng, J., Mahdavi, A., Borenstein, J., Langer, R., Khademhosseini, A. (2007). Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab on a Chip, 7(6), 786–794.

    Article  Google Scholar 

  32. Bauwens, C. L., Song, H., Thavandiran, N., Ungrin, M., Masse, S., Nanthakumar, K., Seguin, C., Zandstra, P. W. (2011). Geometric control of cardiomyogenic induction in human pluripotent stem cells. Tissue Engineering. Part A, 17(15–16), 1901–1909.

    Article  Google Scholar 

  33. Peerani, R., Rao, B. M., Bauwens, C., Yin, T., Wood, G. A., Nagy, A., Kumacheva, E., Zandstra, P. W. (2007). Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO Journal, 26(22), 4744–4755.

    Article  Google Scholar 

  34. Bauwens, C. L., Peerani, R., Niebruegge, S., Woodhouse, K. A., Kumacheva, E., Husain, M., Zandstra, P. W. (2008). Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells, 26(9), 2300–2310.

    Article  Google Scholar 

  35. Schiele, N. R., Corr, D. T., Huang, Y., Raof, N. A., Xie, Y., Chrisey, D. B. (2010). Laser-based direct-write techniques for cell printing. Biofabrication, 2(3), 032001.

    Article  Google Scholar 

  36. Ringeisen, B. R., Othon, C. M., Barron, J. A., Young, D., Spargo, B. J. (2006). Jet-based methods to print living cells. Biotechnology Journal, 1(9), 930–948.

    Article  Google Scholar 

  37. Xu, T., Gregory, C. A., Molnar, P., Cui, X., Jalota, S., Bhaduri, S. B., Boland, T. (2006). Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 27(19), 3580–3588.

    Google Scholar 

  38. Roth, E. A., Xu, T., Das, M., Gregory, C., Hickman, J. J., Boland, T. (2004). Inkjet printing for high-throughput cell patterning. Biomaterials, 25(17), 3707–3715.

    Article  Google Scholar 

  39. Raof, N. A., Schiele, N. R., Xie, Y., Chrisey, D. B., Corr, D. T. (2011). The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells. Biomaterials, 32(7), 1802–1808.

    Article  Google Scholar 

  40. Koch, L., Kuhn, S., Sorg, H., Gruene, M., Schlie, S., Gaebel, R., Polchow, B., Reimers, K., Stoelting, S., Ma, N., Vogt, P. M., Steinhoff, G., Chichkov, B. (2010). Laser printing of skin cells and human stem cells. Tissue Engineering. Part C, Methods, 16(5), 847–854.

    Article  Google Scholar 

  41. Lee, W., Pinckney, J., Lee, V., Lee, J. H., Fischer, K., Polio, S., Park, J. K., Yoo, S. S. (2009). Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport, 20(8), 798–803.

    Article  Google Scholar 

  42. Gerecht, S., Bettinger, C. J., Zhang, Z., Borenstein, J. T., Vunjak-Novakovic, G., Langer, R. (2007). The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials, 28(28), 4068–4077.

    Article  Google Scholar 

  43. Yim, E. K., Darling, E. M., Kulangara, K., Guilak, F., Leong, K. W. (2010). Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials, 31(6), 1299–1306.

    Article  Google Scholar 

  44. Wang, Y., Jiang, X. L., Yang, S. C., Lin, X., He, Y., Yan, C., Wu, L., Chen, G. Q., Wang, Z. Y., Wu, Q. (2011). MicroRNAs in the regulation of interfacial behaviors of MSCs cultured on microgrooved surface pattern. Biomaterials, 32(35), 9207–9217.

    Article  Google Scholar 

  45. Mattotti, M., Alvarez, Z., Ortega, J. A., Planell, J. A., Engel, E., Alcantara, S. (2012). Inducing functional radial glia-like progenitors from cortical astrocyte cultures using micropatterned PMMA. Biomaterials, 33(6), 1759–1770.

    Article  Google Scholar 

  46. Christopherson, G. T., Song, H., Mao, H. Q. (2009). The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials, 30(4), 556–564.

    Article  Google Scholar 

  47. Li, W. J., Tuli, R., Okafor, C., Derfoul, A., Danielson, K. G., Hall, D. J., Tuan, R. S. (2005). A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 26(6), 599–609.

    Article  Google Scholar 

  48. Nur, E. K. A., Ahmed, I., Kamal, J., Schindler, M., Meiners, S. (2006). Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells, 24(2), 426–433.

    Article  Google Scholar 

  49. Yang, F., Murugan, R., Wang, S., Ramakrishna, S. (2005). Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 26(15), 2603–2610.

    Article  Google Scholar 

  50. Xie, J., Willerth, S. M., Li, X., Macewan, M. R., Rader, A., Sakiyama-Elbert, S. E., Xia, Y. (2009). The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials, 30(3), 354–362.

    Article  Google Scholar 

  51. Oh, S., Brammer, K. S., Li, Y. S., Teng, D., Engler, A. J., Chien, S., Jin, S. (2009). Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the National Academy of Sciences of the United States of America, 106(7), 2130–2135.

    Article  Google Scholar 

  52. Sridharan, I., Kim, T., Wang, R. (2009). Adapting collagen/CNT matrix in directing hESC differentiation. Biochemical and Biophysical Research Communications, 381(4), 508–512.

    Article  Google Scholar 

  53. Chao, T. I., Xiang, S., Chen, C. S., Chin, W. C., Nelson, A. J., Wang, C., Lu, J. (2009). Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochemical and Biophysical Research Communications, 384(4), 426–430.

    Article  Google Scholar 

  54. Huang, Y. J., Wu, H. C., Tai, N. H., Wang, T. W. (2012). Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small, 8(18), 2869–2877.

    Google Scholar 

  55. Mooney, E., Mackle, J. N., Blond, D. J., O’Cearbhaill, E., Shaw, G., Blau, W. J., Barry, F. P., Barron, V., Murphy, J. M. (2012). The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials, 33(26), 6132–6139.

    Article  Google Scholar 

  56. Gadegaard, N., Thoms, S., Macintyre, D. S., McGhee, K., Gallagher, J., Casey, B., Wilkinson, C. D. W. (2003). Arrays of nano-dots for cellular engineering. Microelectronic Engineering, 67–68, 162–168.

    Article  Google Scholar 

  57. Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., Wilkinson, C. D., Oreffo, R. O. (2007). The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Materials, 6(12), 997–1003.

    Article  Google Scholar 

  58. Curran, J. M., Stokes, R., Irvine, E., Graham, D., Amro, N. A., Sanedrin, R. G., Jamil, H., Hunt, J. A. (2010). Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine. Lab on a Chip, 10(13), 1662–1670.

    Article  Google Scholar 

  59. Lee, M. R., Kwon, K. W., Jung, H., Kim, H. N., Suh, K. Y., Kim, K., Kim, K. S. (2010). Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials, 31(15), 4360–4366.

    Article  Google Scholar 

  60. Nayak, T. R., Andersen, H., Makam, V. S., Khaw, C., Bae, S., Xu, X., Ee, P. L., Ahn, J. H., Hong, B. H., Pastorin, G., Ozyilmaz, B. (2011). Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano, 5(6), 4670–4678.

    Article  Google Scholar 

  61. Sant, S., Hancock, M. J., Donnelly, J. P., Iyer, D., Khademhosseini, A. (2010). Biomimetic gradient hydrogels for tissue engineering. Canadian Journal of Chemical Engineering, 88(6), 899–911.

    Article  Google Scholar 

  62. Oh, S. H., Kim, T. H., Lee, J. H. (2011). Creating growth factor gradients in three dimensional porous matrix by centrifugation and surface immobilization. Biomaterials, 32(32), 8254–8260.

    Article  Google Scholar 

  63. Wang, X., Wenk, E., Zhang, X., Meinel, L., Vunjak-Novakovic, G., Kaplan, D. L. (2009). Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. Journal of controlled release: official journal of the Controlled Release Society, 134(2), 81–90.

    Article  Google Scholar 

  64. Groeneveld, E. H., & Burger, E. H. (2000). Bone morphogenetic proteins in human bone regeneration. European Journal of Endocrinology, 142(1), 9–21.

    Article  Google Scholar 

  65. Lissenberg-Thunnissen, S. N., de Gorter, D. J., Sier, C. F., Schipper, I. B. (2011). Use and efficacy of bone morphogenetic proteins in fracture healing. International Orthopaedics, 35(9), 1271–1280.

    Article  Google Scholar 

  66. Nelson, C. M., Vanduijn, M. M., Inman, J. L., Fletcher, D. A., Bissell, M. J. (2006). Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science, 314(5797), 298–300.

    Article  Google Scholar 

  67. Bian, W., Juhas, M., Pfeiler, T. W., Bursac, N. (2012). Local tissue geometry determines contractile force generation of engineered muscle networks. Tissue Engineering. Part A, 18(9–10), 957–967.

    Article  Google Scholar 

  68. Carletti, E., Motta, A., Migliaresi, C. (2011). Scaffolds for tissue engineering and 3D cell culture. Methods in Molecular Biology, 695, 17–39.

    Article  Google Scholar 

  69. Liu, X., & Ma, P. X. (2004). Polymeric scaffolds for bone tissue engineering. Annals of Biomedical Engineering, 32(3), 477–486.

    Article  Google Scholar 

  70. Seunarine, K., Gadegaard, N., Tormen, M., Meredith, D. O., Riehle, M. O., Wilkinson, C. D. (2006). 3D polymer scaffolds for tissue engineering. Nanomedicine (London, England), 1(3), 281–296.

    Article  Google Scholar 

  71. Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474–5491.

    Article  Google Scholar 

  72. Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107–124.

    Article  Google Scholar 

  73. Kumar, G., Tison, C. K., Chatterjee, K., Pine, P. S., McDaniel, J. H., Salit, M. L., Young, M. F., Simon, C. G., Jr. (2011). The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials, 32(35), 9188–9196.

    Article  Google Scholar 

  74. Smith, L. A., Liu, X., Hu, J., Ma, P. X. (2010). The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials, 31(21), 5526–5535.

    Article  Google Scholar 

  75. Kumar, G., Waters, M. S., Farooque, T. M., Young, M. F., Simon, C. G., Jr. (2012). Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape. Biomaterials, 33(16), 4022–4030.

    Article  Google Scholar 

  76. Bidan, C. M., Kommareddy, K. P., Rumpler, M., Kollmannsberger, P., Brechet, Y. J., Fratzl, P., Dunlop, J. W. (2012). How linear tension converts to curvature: geometric control of bone tissue growth. PLoS One, 7(5), e36336.

    Article  Google Scholar 

  77. Graziano, A., D’Aquino, R., Cusella-De Angelis, M. G., Laino, G., Piattelli, A., Pacifici, M., De Rosa, A., Papaccio, G. (2007). Concave pit-containing scaffold surfaces improve stem cell-derived osteoblast performance and lead to significant bone tissue formation. PLoS One, 2(6), e496.

    Article  Google Scholar 

  78. Vogel, V., & Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 7(4), 265–275.

    Article  Google Scholar 

  79. Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689.

    Article  Google Scholar 

  80. Solon, J., Levental, I., Sengupta, K., Georges, P. C., Janmey, P. A. (2007). Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophysical Journal, 93(12), 4453–4461.

    Article  Google Scholar 

  81. Discher, D. E., Janmey, P., Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310(5751), 1139–1143.

    Article  Google Scholar 

  82. Gjorevski, N., & Nelson, C. M. (2010). Endogenous patterns of mechanical stress are required for branching morphogenesis. Integrative Biology, 2(9), 424–434.

    Article  Google Scholar 

  83. Raghavan, S., Shen, C. J., Desai, R. A., Sniadecki, N. J., Nelson, C. M., Chen, C. S. (2010). Decoupling diffusional from dimensional control of signaling in 3D culture reveals a role for myosin in tubulogenesis. Journal of Cell Science, 123(Pt 17), 2877–2883.

    Article  Google Scholar 

  84. Cukierman, E., Pankov, R., Yamada, K. M. (2002). Cell interactions with three-dimensional matrices. Current Opinion in Cell Biology, 14(5), 633–639.

    Article  Google Scholar 

  85. Cukierman, E., Pankov, R., Stevens, D. R., Yamada, K. M. (2001). Taking cell-matrix adhesions to the third dimension. Science, 294(5547), 1708–1712.

    Article  Google Scholar 

  86. Fraley, S. I., Feng, Y., Giri, A., Longmore, G. D., Wirtz, D. (2012). Dimensional and temporal controls of three-dimensional cell migration by zyxin and binding partners. Nature Communications, 3, 719.

    Article  Google Scholar 

  87. Doyle, A. D., Wang, F. W., Matsumoto, K., Yamada, K. M. (2009). One-dimensional topography underlies three-dimensional fibrillar cell migration. The Journal of Cell Biology, 184(4), 481–490.

    Article  Google Scholar 

  88. Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K., Chen, C. S. (2003). Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1484–1489.

    Article  Google Scholar 

  89. Dembo, M., & Wang, Y. L. (1999). Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophysical Journal, 76(4), 2307–2316.

    Article  Google Scholar 

  90. Franck, C., Maskarinec, S. A., Tirrell, D. A., Ravichandran, G. (2011). Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. PLoS One, 6(3), e17833.

    Article  Google Scholar 

  91. Nelson, C. M., Jean, R. P., Tan, J. L., Liu, W. F., Sniadecki, N. J., Spector, A. A., Chen, C. S. (2005). Emergent patterns of growth controlled by multicellular form and mechanics. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11594–11599.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Q. Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worley, K., Certo, A. & Wan, L.Q. Geometry–Force Control of Stem Cell Fate. BioNanoSci. 3, 43–51 (2013). https://doi.org/10.1007/s12668-012-0067-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-012-0067-0

Keywords

Navigation