Skip to main content

Advertisement

Log in

New coordinated design of I-STATCOM for multimachine multibus electrical energy system driving

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

FACT systems have been used for four decades and present very good dynamic and transitory performances in the electrical networks. In this work, the behavior of a new generation of static compensator, I-STATCOM, installed in the middle of a long 400 kV line is investigated. The project is located in the eastern area of the electricity production and transmission in Algeria. I-STATCOM with its properties of reactive power compensator and voltage regulator is an intelligent system operator which has access to the generator references, assists the synchro check in the network coupling operations and has the capacity of changing the state of the breakers to maintain service continuity even in the most severe operation modes. Analysis of exploitation incidents and experience feedbacks led us to this choice, which could be generalized in the future on more complex inter-connected networks assisted by AVR–PSS Matlab/Simulink controllers of the same type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Hingorani, N.G., Gyugyi, L.: Understanding FACTS-concepts and technology of flexible AC transmission systems, 1st edn. IEEE Press, Piscataway, N.J (2000)

    Google Scholar 

  2. Papic, I.: Mathematical analysis of FACTS devices based on a voltage source converter, Part 1: mathematical models. Electr. Power Syst. Res. 56, 139–148 (2000)

    Article  Google Scholar 

  3. Blažic, B., Papic, I.: A new mathematical model and control of D-StatCom for operation under unbalanced conditions. Electr. Power Syst. Res. 72, 279–287 (2004)

    Article  Google Scholar 

  4. Liu, F., Mei, S., Lu, Q., Ni, Y., Wu, F.F., Yokoyama, A.: The nonlinear internal control of STATCOM: theory and application. Electr. Power Energy Syst. 25, 421–430 (2003)

    Article  Google Scholar 

  5. Wang, H.F.: Interactions and multivariable design of STATCOM AC and DC voltage control. Electr. Power Energy Syst. 25, 387–394 (2003)

    Article  Google Scholar 

  6. Rahim, A.H.M.A., Kandlawala, M.F.: Robust STATCOM voltage controller design using loop-shaping technique. Electr. Power Syst. Res. 68, 61–74 (2004)

    Article  Google Scholar 

  7. Molina, M.G., Mercado, P.E., Watanabe, E.H.: Analysis of integrated STATCOM-SMES based on three-phase three-level multi-pulse voltage source inverter for high power utility applications. J. Frankl. Inst. 348, 2350–2377 (2011)

    Article  Google Scholar 

  8. Canizares, C.A., Pozzi, M., Corsi, S., Uzunovic, E.: STATCOM modeling for voltage and angle stability studies. Electr. Power Energy Syst. 25, 431–441 (2003)

    Article  Google Scholar 

  9. Haque, M.H.: Damping improvement by FACTS devices: a comparison between STATCOM and SSSC. Electr. Power Syst. Res. 76, 865–872 (2006)

    Article  Google Scholar 

  10. Zhang, X.P., Handschin, E., Yao, M.: Multi-control functional static synchronous compensator (STATCOM) in power system steady-state operations. Electr. Power Syst. Res. 72, 269–278 (2004)

    Article  Google Scholar 

  11. Norouzi, A.H., Sharaf, A.M.: Two control schemes to enhance the dynamic performance of the STATCOM and SSSC. IEEE Trans. Power Deliv. 20(1), 435–442 (2005)

    Article  Google Scholar 

  12. El-Moursi, M.S., Sharaf, A.M.: Novel reactive power controllers for the STATCOM and SSSC. Electr. Power Syst. Res. 76, 228–241 (2006)

    Article  Google Scholar 

  13. Mahmud, M.A., Pota, H.R., Hossain, M.J.: Nonlinear DSTATCOM controller design for distribution network with distributed generation to enhance voltage stability. Electr. Power Energy Syst. 53, 974–979 (2013)

    Article  Google Scholar 

  14. Wang, B., Cathey, J.J.: DSP-controlled, space-vector PWM, current source converter for STATCOM application. Electr. Power Syst. Res. 67, 123–131 (2003)

    Article  Google Scholar 

  15. Bharatiraja, C., Jeevananthan, S., Latha, R., Dash, S.S.: A space vector pulse widh modulation approch for DC link voltage balancing in diode clamped multilevel inverter. AASRI Proc. 3, 133–140 (2012)

    Article  Google Scholar 

  16. Khodabakhshian, A., Morshed, M.J., Parastegari, M.: Coordinated design of STATCOM and excitation system controllers for multi-machine power systems using zero dynamics method. Electr. Power Energy Syst. 49, 269–279 (2013)

    Article  Google Scholar 

  17. Esmaili, M.R., Hooshmand, R.A., Parastegari, M., Panah, P.G., Azizkhani, S.: New coordinated design of SVC and PSS for multi-machine power system using BF-PSO algorithm. Proc. Technol. 11, 65–74 (2013)

    Article  Google Scholar 

  18. Tripathy, M., Mishra, S.: Coordinated tuning of PSS and TCSC to improve Hopf Bifurcation margin in multimachine power system by a modified Bacteria Foraging Algorithm. Electr. Power Energy Syst. 66, 97–109 (2015)

    Article  Google Scholar 

  19. Gu, L., Wang, J.: Nonlinear coordinated control design of excitation and STATCOM of power systems. Electr. Power Syst. Res. 77, 788–796 (2007)

    Article  Google Scholar 

  20. Sahoo, N.C., Panigrahi, B.K., Dash, P.K., Panda, G.: Multivariable nonlinear control of STATCOM for synchronous generator stabilization. Electr. Power Energy Syst. 26, 37–48 (2004)

    Article  Google Scholar 

  21. Ghorbani, A., Mozaffari, B., Ranjbar, A.M.: Application of subsynchronous damping controller (SSDC) to STATCOM. Electr. Power Energy Syst. 43, 418–426 (2012)

    Article  Google Scholar 

  22. Furini, M.A., Pereira, A.L.S., Araujo, P.B.: Pole placement by coordinated tuning of Power System Stabilizers and FACTS-POD stabilizers. Electr. Power Energy Syst. 33, 615–622 (2011)

    Article  Google Scholar 

  23. Panda, S., Padhy, N.P.: Optimal location and controller design of STATCOM for power system stability improvement using PSO. J. Frankl. Inst. 345, 166–181 (2008)

    Article  MATH  Google Scholar 

  24. Radman, G., Raje, R.S.: Dynamic model for power systems with multiple FACTS controllers. Electr. Power Syst. Res. 78, 361–371 (2008)

    Article  Google Scholar 

  25. Mahdad, B., Srairi, K.: Application of a combined superconducting fault current limiter and STATCOM to enhancement of power system transient stability. Phys. C 495, 160–168 (2013)

    Article  Google Scholar 

  26. Ait-Mekideche, M.: Direction des relations avec les médias de la Société Algérienne de l’électricité et du Gaz SONELGAZ: Newsletter presse N\(^{\circ }\)22, synthèse des plans de développement des sociétés du groupe SONELGAZ 2013–2023 (2013)

  27. Direction générale de la stratégie et de la perspective: Société Algérienne de gestion du Réseau de Transport d’Electricité – filiale du groupe Sonelgaz, Plan de développement du réseau de transport d’électricité 2011–2021, document pour le CE (2011)

  28. Direction générale de la stratégie et de la perspective: Société Algérienne de gestion du Réseau de Transport d’Electricité – filiale du groupe Sonelgaz, Plan de développement du réseau de transport d’électricité 2013–2023, document pour le CE du (2013)

  29. Rapport d’incident du 03 février: de l’opérateur du système de production et de transport d’électricité algérien (2003)

  30. Sinan, T.A.S., Bier, V.M.: Addressing vulnerability to cascading failures against intelligent adversaries in power networks. Energy Syst. 7(2), 193–213 (2016)

    Article  Google Scholar 

  31. Amorouayeche, M., Bensalem, R., Maziz, S.: Société Opérateur du Système Electrique, Société du groupe Sonelgaz, Bulletin 11 trimestre 3 (2011)

  32. Chekal, N., Kherouf, M.: Rapport d’analyse de l’incident du 5 mai 2014 à 19h34’ survenu au poste 400/220 kV de Fkirina, Région de transport d’électricité d’Annaba (2014)

  33. Amiar, A.: Division exploitation de l’unité de production d’électricité Annaba-Port: Rapport d’incident du 5 décembre 2014 à 10h29’59” pendant l’essai black-start annuel (2014)

  34. Amiar, A.: Division exploitation de l’unité de production d’électricité Annaba-Port: Rapport d’incident du 16 janvier 2015 à 10h44’45” pendant l’essai black-start annuel (2015)

  35. Amiar, A.: Note technique du 9 février 2014 sur le rotor et le stator de l’alternateur du groupe turbine à vapeur 4 de la centrale thermique d’Annaba-port (2014)

  36. Opérateur du système électrique algérien: Schéma prévisionnel du système de production-transport d’électricité national à l’horizon (2014)

  37. Eremia, M., Trecat, J., Germond, A.: Réseaux Electriques : aspects actuels, Editura Tehnică, Bucureşti (2000)

  38. IEEE Power Engineering Society: IEEE recommended practice for excitation system models for power system stability studies, IEEE Std. 421-5-2005. IEEE, New York, NY, USA (2006)

  39. Sanderson, H.: Scheme N\(^{\circ }\) 229A7976_fr, Excitation constantes du modèle système de la centrale cycle combiné 3 \(\times \) 400 MW SKD, GE Power Generation, General Electric Company (2008)

  40. Jiang, X.: Operating modes and their regulations of voltage-sourced converter based FACTS controllers. Ph.D. thesis, Faculty of Rensselaer Polytechnic Institute, Troy, New York (2007)

  41. Angeles-Camacho, C.: Phase domain modeling and simulation of large-scale power systems with VSC-based FACTS equipment. Ph.D. thesis, University of Glasgow (2005)

  42. Sen, K.K., Sen, M.L.: Introduction to FACTS controllers: theory, modeling and applications, IEEE press series on power engineering. Wiley, INC Publication, USA (2009)

    Book  Google Scholar 

  43. Frank, S., Steponavice, I.: Optimal power flow: a bibliographic survey II—non-deterministic and hybrid methods. Energy Syst. 3(3), 259–289 (2012)

    Article  Google Scholar 

  44. Société Algérienne de gestion du Réseau de Transport d’Electricité filiale du groupe Sonelgaz: Direction régionale d’Annaba, Département de maintenance et de travaux, Division essais et contrôles: Réglages des protections ouvrages de la DTE-AN (2014)

  45. Société Algérienne de gestion du Réseau de Transport d’Electricité filiale du groupe Sonelgaz: Direction régionale d’Annaba, Service de gestion du patrimoine: Rapports de coûts de disjoncteurs et sectionneurs 400/220 kV tirés des cahiers des charges d’opérations planifiés (2015)

  46. Rapport annuel de l’opérateur système d’électricité Algérien du groupe Sonelgaz: Responsabilité de la pointe d’été (2013)

  47. Direction générale de la stratégie et de la perspective: Société Algérienne de gestion du Réseau de Transport d’Electricité – filiale du groupe Sonelgaz: Plan de développement du réseau de transport d’électricité 2014-2024, document pour la CE du (2014)

Download references

Acknowledgments

This paper has been checked by Mrs. Wilhelmina Logerais, a native speaker, whom the authors wish to express their full gratitude to.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Logerais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiar, A., Adjabi, M. & Logerais, P.O. New coordinated design of I-STATCOM for multimachine multibus electrical energy system driving. Energy Syst 9, 135–170 (2018). https://doi.org/10.1007/s12667-016-0220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-016-0220-x

Keywords

Navigation