Skip to main content

Advertisement

Log in

Integration of optimal storage operation into marginal cost curve representation

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

In the economic dispatch problem, the objective is to supply the demand at least cost. It is a well known fact that the solution to this problem corresponds to the generation settings that lead to equal marginal/incremental costs for all generators and for which the total generation output is equal to the total load. This provides a way to determine the solution to the economic dispatch problem by simply considering the marginal cost curves of the generators and the demand curve. In this paper, we integrate the effect of storage into this marginal cost analysis. This requires the consideration of conversion losses occurring in the storage converter, the extension to a multi-step optimization problem and the limitations imposed by the limited energy storage capacity. A method is provided by which the optimal generation and storage settings can be determined by only using marginal cost curves and the intersections thereof. Simulation results provide insights into how the theory translates into solving a multi-step optimization problem including storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Awad, A., Fuller, J., EL-Fouly, T., Salama, M.: Impact of energy storage systems on electricity market equilibrium. IEEE Trans. Sustain. Energy 5(3), 875–885 (2014). doi:10.1109/TSTE.2014.2309661

  2. Baone, C., DeMarco, C.: Distributed control design to regulate grid frequency and reduce drivetrain stress in wind systems using battery storage. In: American Control Conference (ACC), pp. 1368–1375 (2012). doi:10.1109/ACC.2012.6315217

  3. Bergen, A., Vittal, V.: Power Systems Analysis. Prentice Hall, USA (1999)

  4. Delille, G., Francois, B., Malarange, G.: Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia. IEEE Trans. Sustain. Energy 3(4), 931–939 (2012). doi:10.1109/TSTE.2012.2205025

    Article  Google Scholar 

  5. Dutta, S., Sharma, R.: Optimal storage sizing for integrating wind and load forecast uncertainties. In: Innovative Smart Grid Technologies (ISGT) (2012). doi:10.1109/ISGT.2012.6175721

  6. Hopkins, M., Pahwa, A., Easton, T.: Intelligent dispatch for distributed renewable resources. IEEE Trans. Smart Grid 3(2), 1047–1054 (2012). doi:10.1109/TSG.2012.2190946

    Article  Google Scholar 

  7. Hug-Glanzmann, G.: Coordination of intermittent generation with storage, demand control and conventional energy sources. In: VIII Bulk Power System Dynamics and Control (iREP) Symposium (2010). doi:10.1109/IREP.2010.5563304

  8. Khalid, M., Savkin, A.: Model predictive control based efficient operation of battery energy storage system for primary frequency control. In: 11th International Conference on Control Automation Robotics Vision (ICARCV), pp. 2248–2252 (2010). doi:10.1109/ICARCV.2010.5707855

  9. Kirschen, D., Strbac, G.: Fundamentals of Power System Economics. Wiley, New York (2004)

  10. Li, N., Hedman, K.: Economic assessment of energy storage in systems with high levels of renewable resources. IEEE Trans. Sustain. Energy PP(99), 1–9 (2014). doi:10.1109/TSTE.2014.2329881

  11. Mayhorn, E., Kalsi, K., Elizondo, M., Zhang, W., Lu, S., Samaan, N.,Butler-Purry, K.: Optimal control of distributed energy resources using model predictive control. In: IEEE Power and Energy Society General Meeting (2012). doi:10.1109/PESGM.2012.6345596

  12. Megel, O., Mathieu, J., Andersson, G.: Maximizing the potential of energy storage to provide fast frequency control. In: Innovative Smart Grid Technologies Europe (ISGT) (2013). doi:10.1109/ISGTEurope.2013.6695380

  13. Miao, L., Wen, J., Xie, H., Yue, C., Lee, W.: Coordinated control strategy of wind turbine generator and energy storage equipment for frequency support. In: IEEE Industry Applications Society Annual Meeting (2014). doi:10.1109/IAS.2014.6978370

  14. Parvania, M., Fotuhi-Firuzabad, M., Shahidehpour, M.: Comparative hourly scheduling of centralized and distributed storage in day-ahead markets. IEEE Trans. Sustain. Energy 5(3), 729–737 (2014). doi:10.1109/TSTE.2014.2300864

    Article  Google Scholar 

  15. Silva-Monroy, C., Watson, J.P.: Integrating energy storage devices into market management systems. Proc. IEEE 102(7), 1084–1093 (2014). doi:10.1109/JPROC.2014.2327378

  16. Teleke, S., Baran, M., Bhattacharya, S., Huang, A.: Rule-based control of battery energy storage for dispatching intermittent renewable sources. IEEE Trans. Sustain. Energy 1(3), 117–124 (2010). doi:10.1109/TSTE.2010.2061880

    Article  Google Scholar 

  17. Torres, M., Lopes, L., Moran, T., Espinoza J.: Self-tuning virtual synchronous machine: a control strategy for energy storage systems to support dynamic frequency control. IEEE Trans. Energy Convers. 29(4), 833–840 (2014). doi:10.1109/TEC.2014.2362577

  18. Zhu, D., Hug, G.: Robust control design for integration of energy storage into requency regulation. In: Innovative Smart Grid Technologies Europe (ISGT) (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Hug.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hug, G. Integration of optimal storage operation into marginal cost curve representation. Energy Syst 7, 391–409 (2016). https://doi.org/10.1007/s12667-015-0163-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-015-0163-7

Keywords

Navigation