Skip to main content

Advertisement

Log in

Operating analysis of a fluidized bed carbonator to remove \(\text{CO}_{2}\)

  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

This paper mainly focuses on the utilization of reversible carbonation reaction of CaO to capture \(\text{CO}_{2}\) from the flue gas. The operating analysis regarding the effects of superficial gas velocity, the particle diameter and the calcination/carbonation cycle number on the carbonation process has been performed and compared to experimental data. It is concluded that in order to optimize the carbonation process the superficial gas velocity can decrease gradually during the reaction and smaller-sized absorbent should be chosen. However, the limits of superficial gas velocity and absorbent size need to be taken into consideration as well to avoid entrainment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(C_{\mathrm{bCO}_{2}}\) :

   \(\text{CO}_{2}\) concentration in the bubble phase

\(C_{\mathrm{CO}_{2},\mathrm{eq}}\) :

   Equilibrium \(\text{CO}_{2}\) concentration over CaO

\(C_{\mathrm{eCO}_{2}}\) :

   \(\text{CO}_{2}\) concentration in the emulsion phase

\(d_b\) :

   Bubbles diameter

\(d_p\) :

   Particles diameter

\(e_0\) :

   Particle porosity

\(f_a\) :

   Fraction of active CaO in the carbonator

\(k_g\) :

   Mass transfer coefficient in the emulsion phase

\(k_s\) :

   Carbonation reaction rate constant at the CaO particle surface

\(K_\mathrm{be}\) :

   Overall gas interchange coefficient between bubble and emulsion phases

\(K_r\) :

   Overall carbonation rate constant of particles in the emulsion phase

\(K_{ri}\) :

   Carbonation reaction rate constant

N:

   The number of calcination/carbonation cycle

T:

   Temperature of carbonation

\(S_0\) :

   Initial surface area of CaO per unit volume of solid CaO

\(u_0\) :

   Superficial gas velocity

\(u_b^*\) :

   Effective gas velocity in bubble phase

\(u_\mathrm{mf}\) :

   Minimum fluidization velocity

\(X\) :

   Actual carbonation conversion of CaO to \(\text{CaCO}_{3}\)

\(X_{b,N}\) :

   Maximum carbonation conversion of CaO to \(\text{CaCO}_{3}\) in the Nth cycle

\(\delta \) :

   Bubble fraction in the fluidized bed

\(\varepsilon _\mathrm{mf}\) :

   Bed porosity at minimum fluidization

\(\rho _\mathrm{CaO}\) :

   True particle density

\(\gamma _b\) :

   Volume of solids in bubble phase divided by the volume of bubbles

References

  1. IPCC. Special report on carbon dioxide capture and storage (2005)

  2. IEA. Annual Energy Outlook 2003. DOE/IEA-0383, January (2003)

  3. Thitakamol, B., Veawab, A., Aroonwilas, A.: Environmental impacts of absorption-based \(\text{CO}_{2}\) capture unit for post-combustion treatment of flue gas from coal-fired power plant. Int. J. Greenh. Gas Control 1, 318–342 (2007)

    Article  Google Scholar 

  4. Romeo, L.M., Abanades, J.C., Escosa, J.M., Pano, J., Gimenez, A., Sanchez-Biezma, A., Ballesteros, J.C.: Oxyfuel carbonation/calcination cycle for low cost \(\text{CO}_{2}\) capture in existing power plants. Energy Convers. Manag. 49, 2809–2814 (2008)

    Article  Google Scholar 

  5. Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M., Tejima, K.: A twin fluid-bed reactor for removal of \(\text{CO}_{2}\) from combustion processes. Trans. IChemE 77, 62–68 (1999)

    Article  Google Scholar 

  6. Dennis, J.S., Hayhurst, A.N.: The effect of \(\text{CO}_{2}\) on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds. Chem. Eng. Sci. 42, 2361–2372 (1987)

    Article  Google Scholar 

  7. Silcox, G.D., Kramlich, J.C., Pershing, D.W.: A mathematical model for the flash calcination of dispersed \(\text{CaCO}_{3}\) and \(\text{Ca}(\text{OH})_{2}\) Particles. Ind. Eng. Chem. Res. 28, 155–160 (1989)

    Article  Google Scholar 

  8. Garcia-Labiano, F., Abad, A., de Diego, L.F., Gayan, P., Adanez, J.: Calcination of calcium-based sorbents at pressure in a broad range of \(\text{CO}_{2}\) concentrations. Chem. Eng. Sci. 57, 2381–2393 (2002)

    Article  Google Scholar 

  9. Abanades, J.C., Anthony, E.J., Lu, D.Y., Salvador, C., Alvarez, D.: Capture of \(\text{CO}_{2}\) from combustion gases in a fluidized bed of CaO. AIChE J. 50, 1614–1622 (2004)

    Article  Google Scholar 

  10. Stanmore, B.R., Gilot, P.: Calcination and carbonation of limestone during thermal cycling for \(\text{CO}_{2}\) sequestration. Fuel Process. Technol. 86, 1707–1743 (2005)

    Article  Google Scholar 

  11. Blamey, J., Anthony, E.J., Wang, J., Fennell, P.S.: The calcium looping cycle for large-scale \(\text{CO}_{2}\) capture. Prog. Energy Combust. Sci. 36, 260–279 (2010)

    Article  Google Scholar 

  12. Khinast, J., Krammer, G.F., Brunner, Ch., Staudinger, G.: Decomposition of limestone: the influence of \(\text{CO}_{2}\) and particle size on the reaction rate. Chem. Eng. Sci. 51, 623–634 (1996)

    Article  Google Scholar 

  13. Adanez, J., Garcia-Labiano, F., Fierro, V.: Modelling for the high-temperature sulphation of calcium-based sorbents with cylindrical and plate-like pore geometries. Chem. Eng. Sci. 55, 3665–3683 (2000)

    Article  Google Scholar 

  14. Garea, A., Marques, J.A., Irabien, A.: Modelling of in-duct desulfurization reactors. Chem. Eng. J. 107, 119–125 (2005)

    Article  Google Scholar 

  15. Alonso, M., Rodriguez, N., Grasa, G., Abanades, J.C.: Modelling of a fluidized bed carbonator reactor to capture \(\text{CO}_{2}\) from a combustion flue gas. Chem. Eng. Sci. 64, 883–891 (2009)

    Article  Google Scholar 

  16. Kunii, D., Levenspiel, O.: Fluidized reactor models. 1. For bubbling beds of fine, intermediate, and large particles. 2. For the lean phase: freeboard and fast fluidization. Ind. Eng. Chem. Res. 29, 1226–1234 (1990)

    Article  Google Scholar 

  17. Romano, M.: Coal-fired power plant with calcium oxide carbonation for postcombustion \(\text{CO}_{2}\) capture. Energy Procedia 1, 1099–1106 (2009)

    Article  MathSciNet  Google Scholar 

  18. Romano, M.C.: Modeling the carbonator of a Ca-looping process for \(\text{CO}_{2}\) capture from power plant flue gas. Chem. Eng. Sci. 69, 257–269 (2012)

    Article  MathSciNet  Google Scholar 

  19. Lasheras, A., Strohle, J., Galloy, A., Epple, B.: Carbonate looping process simulation using a 1D fluidized bed model for the carbonator. Int. J. Greenh. Gas Control 5, 686–693 (2011)

    Article  Google Scholar 

  20. Charitos, A., Hawthorne, C., Bidwe, A.R., Sivalingam, S., Schuster, A., Spliethoff, H., Scheffknecht, G.: Parametric investigation of the calcium looping process for \(\text{CO}_{2}\) capture in a 10kWth dual fluidized bed. Int. J. Greenh. Gas Control 2010(4), 776–784 (2010)

    Article  Google Scholar 

  21. Baker, E.H.: Calcium oxide–carbon dioxide system in the pressure range 1–300 atmospheres. J. Chem. Soc. 3, 464–701 (1962)

    Article  Google Scholar 

  22. Grace, J.R.: Fluidized bed hydrodynamics. In: Hetsroni, G. (ed.) Handbook of Multiphase Systems. Washington Hemisphere Publishing, Washington (1992)

    Google Scholar 

  23. Basu, P.: Combustion and gasification in fluidized beds. Taylor & Francis Group/CRC Press, United States (2006)

    Book  Google Scholar 

  24. Darton, R.C., LaNauze, R.D., Davidson, J.F., Harrison, D.: Bubble growth due to coalescence in fluidized beds. Trans. Inst. Chem. Eng. 55, 274–280 (1977)

    Google Scholar 

  25. Davidson, J.F., Harrison, D.: Fluidised Particles. Cambridge University Press, New York (1963)

    Google Scholar 

  26. Turnbull, E., Davidson, J.F.: Fluidized combustion of char and volatiles from coal. AIChE J. 30, 881–889 (1984)

    Article  Google Scholar 

  27. Abanades, J.C.: The maximum capture efficiency of \(\text{CO}_{2}\) using a carbonation/calcination cycle of \(\text{CaO}/\text{CaCO}_{3}\). Chem. Eng. J. 90, 303–306 (2002)

    Article  Google Scholar 

  28. Abanades, J.C., Alvarez, D.: Conversion limits in the reaction of \(\text{CO}_{2}\) with lime. Energy Fuels 17, 308–315 (2003)

    Article  Google Scholar 

  29. Wang, J., Anthony, E.J.: On the decay behavior of the \(\text{CO}_{2}\) absorption capacity of CaO-based sorbents. Ind. Eng. Chem. Res. 44, 627–629 (2005)

    Article  Google Scholar 

  30. Grasa, G.S., Abanades, J.C.: \(\text{CO}_{2}\) capture capacity of CaO in long series of carbonation/calcination cycles. Ind. Eng. Chem. Res. 45, 8846–8851 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The work presented here is funded by China National Natural Science Foundation (No. 51106048) and the Program for 973 Project ‘Spatio-temporal Distribution and Evaluation Method and System Integration of Energy Consumption at Overall Working Conditions for Large-scale Coal-fired Power Generating Unit’ (No. 2009CB219801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongrong Zhai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, R., Yang, Y., Zhu, Y. et al. Operating analysis of a fluidized bed carbonator to remove \(\text{CO}_{2}\) . Energy Syst 4, 47–60 (2013). https://doi.org/10.1007/s12667-012-0065-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-012-0065-x

Keywords

Navigation