Skip to main content
Log in

Dissimilar Friction Stir Butt Welding of AA6061-T6 and AA6061/SiCp Composite: Microstructural Characteristics, Impact Toughness, Hardness, Strength Under Transverse Impact

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Impact response of dissimilar friction stir welded (FSWed) joints between a monolithic alloy and metal matrix composite has not been yet reported and thus requires a detailed investigation. Therefore, an exhaustive research on the microstructure, microhardness, tensile properties, fracture toughness and failure response under transverse impact of the FSWed AA6061-T6/AA6061 + SiCp joint was conducted within the study. The plates of size 300 × 120 × 3.2 mm3 were friction stir butt welded using a tool rotational speed of 1000 rpm, welding speed of 80 mm/min, tilt angle of 1° and a penetration depth of 0.2 mm into the upper surface of the workpieces. The obtained results indicated that there is no defect in the weld zone of the FSWed dissimilar joint. Microhardness distribution across the mid-thickness of the joint demonstrated superior Vickers hardness within the nugget zone compared to that of AA6061-T6. In addition, tensile rupture took place away from the weld region on the advancing side in the joint for all transverse tensile test specimens. It was also demonstrated that the FSW process resulted in a significant enhancement in fracture toughness compared to those of the base materials. Furthermore, weld nugget of the joint withstood the applied transverse impact energies ranging between 2.5 and 7.5 J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Yazdipour A, and Heidarzadeh A, Int J Adv Manuf Technol 87 (2016) 3105.

    Article  Google Scholar 

  2. Khan N Z, Siddiquee A N, Khan Z A, and Mukhopadhyay A K, J Alloys Compd 695 (2017) 2902.

    Article  Google Scholar 

  3. Yan Z, Liu X, and Fang H, J Mater Sci Technol 32 (2016) 1378.

    Article  Google Scholar 

  4. Sharifitabar M, and Nami H, Compos: Part B: Eng 42 (2011) 2004.

    Article  Google Scholar 

  5. Guo J, Gougeon P, and Chen X G, Mater Sci Eng: A 553 (2012) 149.

    Article  Google Scholar 

  6. Cavaliere P, Rossi G L, Di Sante R, and Moretti M, Int J Fatigue 30 (2008) 198.

    Article  Google Scholar 

  7. Guo J, Amira S, Gougeon P, and Chen X G, Mater Charact 62 (2011) 865.

    Article  Google Scholar 

  8. Ahn B W, Choi D H, Kim Y H, and Jung S B, Trans Nonferrous Met Soc China 22 (2012) 634.

    Article  Google Scholar 

  9. Salehi M, Farnoush H, and Mohandesi J A, Mater Des 63 (2014) 419.

    Article  Google Scholar 

  10. Zhang X Z, Chen T J, and Qin Y H, Mater Des 99 (2016) 182.

    Article  Google Scholar 

  11. Rajan H B M, Dinaharan I, Ramabalan S, and Akinlabi E T, J Alloys Compd 657 (2016) 250.

    Article  Google Scholar 

  12. Elangovan K, Balasubramanian V, and Valliappan M, Int J Adv Manuf Technol 38 (2008) 285.

    Article  Google Scholar 

  13. Fadaeifard F, Matori K A, Aziz S A, Zolkarnain L, and Rahim M A Z B A, Metals 7 48 (2017). https://doi.org/10.3390/met7020048.

    Article  Google Scholar 

  14. Hejazi I, and Mirsalehi S E, Trans Nonferrous Met Soc China 26 (2016) 676.

    Article  Google Scholar 

  15. Wang T, Zou Y, and Matsuda K, Mater Des 90 (2016) 13.

    Article  Google Scholar 

  16. Ahmadnia M, Shahraki S, and Kamarposhti M A, Int J Adv Manuf Technol 87 (2016) 2337.

    Article  Google Scholar 

  17. Rodriguez R I, Jordon J B, Allison P G, Rushing T, and Garcia L, Mater Des 83 (2015) 60.

    Article  Google Scholar 

  18. Ilangovan M, Boopathy S R, and Balasubramanian V, Trans Nonferrous Met Soc China 25 (2015) 1080.

    Article  Google Scholar 

  19. Pirondi A, Collini L, and Fersini D, Eng Fract Mech 75 (2008) 4333.

    Article  Google Scholar 

  20. Minak G, Ceschini L, Boromei I, and Ponte M, Int J Fatigue 32 (2010) 218.

    Article  Google Scholar 

  21. Periyasamy P, Mohan B, Balasubramanian V, Rajakumar S, and Venugopal S, Trans Nonferrous Met Soc China 23 (2013) 942.

    Article  Google Scholar 

  22. Zheng Q, Feng X, Shen Y, Huang G, and Zhao P, J Alloys Compd 695 (2017) 952.

    Article  Google Scholar 

  23. Cho J H, Kang S H, Han H N, and Oh K H, Met Mater Int 14 (2008) 247.

    Article  Google Scholar 

  24. Shindo D J, Rivera A R, and Murr L E, J Mater Sci 37 (2002) 4999.

    Article  Google Scholar 

  25. Feng A H, Xiao B L, and Ma Z Y, Compos Sci Technol 68 (2008) 2141.

    Article  Google Scholar 

  26. Dinaharan I, and Murugan N, Met Mater Int 18 (2012) 135.

    Article  Google Scholar 

  27. Cioffi F, Fernández R, Gesto D, Rey P, Verdera D, and González-Doncel G Compos: Part A 54 (2013) 117.

    Article  Google Scholar 

  28. Kalaiselvan K, Dinaharan I, and Murugan N, Mater Des 55 (2014) 176.

    Article  Google Scholar 

  29. Ipekoglu G, Erim S, and Cam G, Metall Mater Trans A 45 (2014) 864.

    Article  Google Scholar 

  30. Malopheyev S, Vysotskiy I, Kulitskiy V, Mironov S, and Kaibyshev R, Mater Sci Eng: A 662 (2016) 136.

    Article  Google Scholar 

  31. Ji S D, Meng X C, Ma L, and Gao S S, Int J Adv Manuf Technol 87 (2016) 3051.

    Article  Google Scholar 

  32. Juárez J C V, Almaraz G M D, Hernández R G, and López J J V, Adv Mater Sci Eng 2016 (2016) 1–9. http://dx.doi.org/10.1155/2016/4567940.

    Article  Google Scholar 

  33. Padhy G K, Wu C S, Gao S, and Shi L, Mater Des 92 (2016) 710.

    Article  Google Scholar 

  34. https://materion.com/-/media/files/pdfs/aerospace-metal-composites/supremex/supremex-620xf-data-sheet.pdf?la=en&hash=B674C2448C7999831E51555A8E6D35A9D347A5D1. Accessed 18.12.2017.

  35. He J, Ling Z, and Li H, Int J Adv Manuf Technol 84 (2016) 1953.

    Article  Google Scholar 

  36. Oztoprak N, Yeni C E, and Kiral B G, Mater Res Express 5 (2018) 066547.

    Article  Google Scholar 

  37. Mao Y, Ke L, Liu F, Liu Q, Huang C, and Xing L, Mater Des 62 (2014) 334.

    Article  Google Scholar 

  38. Ipekoğlu G, and Cam G, Metall Mater Trans A 45 (2014) 3074.

    Article  Google Scholar 

  39. Pantelis D I, Karakizis P N, Daniolos N M, Charitidis C A, Koumoulos E P, and Dragatogiannis D A, Mater Manuf Process 31 (2016) 264.

    Article  Google Scholar 

  40. Pirondi A, and Collini L, Int J Fatigue 31 (2009) 111.

    Article  Google Scholar 

  41. Sivananth V, Vijayarangan S, and Rajamanickam N, Mater Sci Eng: A 597 (2014) 304.

    Article  Google Scholar 

  42. Jakubczak P, Bieniaś J, Majerski K, Ostapiuk M, and Surowska B, Aircr Eng Aerosp Technol Int J 86 (2014) 287.

    Article  Google Scholar 

  43. Bieniaś J, Jakubczaka P, Surowska B, and Dragan K, Arch Civ Mech Eng 15 (2015) 925.

    Article  Google Scholar 

  44. Ekici R, and Kaburcuk M, J Compos Mater 49 (2015) 853.

    Article  Google Scholar 

  45. Cerit A A, Mater Des 57 (2014) 330.

    Article  Google Scholar 

Download references

Funding

Funding was provided by Dokuz Eylul University Department of Scientific Research Projects (BAP-2016.KB.FEN.021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahit Öztoprak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztoprak, N., Yeni, Ç.E. & Kıral, B.G. Dissimilar Friction Stir Butt Welding of AA6061-T6 and AA6061/SiCp Composite: Microstructural Characteristics, Impact Toughness, Hardness, Strength Under Transverse Impact. Trans Indian Inst Met 72, 511–521 (2019). https://doi.org/10.1007/s12666-018-1503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1503-9

Keywords

Navigation