Skip to main content
Log in

Study of Interactions of Slow Highly Charged Bismuth Ions with ZnO Nanorods

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

We present physical properties of ZnO nanorods irradiated with slow highly charged Bismuth (Bi74+) ions of different fluences. Samples were grown on Si substrates by hydrothermal technique at 90 °C and were found to be randomly distributed. Room temperature Raman measurements showed the decrease and the blue shift of \( {E}_{2}^{\text{high}} \) mode of irradiated samples, suggesting the suppression of crystallinity and the growth of stress. Signature of dynamic annealing (defect-annihilation) of radiation defects at higher doses was observed. Room temperature photoluminescence studies showed similar features in two regions: ultraviolet and broad visible regions. Both regions were unaffected with increased ion fluences. UV emission was found to be related to the FX-2LO transition and visible emission to the intrinsic defects of the samples. X-ray emissions detected in ion-surface interactions confirmed the formation and the decay of hollow Bi atoms during their approach to the sample surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morkoç H and Özgür Ü, Zinc Oxide-Fundamentals, Materials and Device Technology, Wiley-VCH, Weinheim (2009).

    Google Scholar 

  2. Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, AvrutinV, Cho A -J, and Morkoç H, J Appl Phys 98 (2005) 041301.

    Article  Google Scholar 

  3. Damen T C, Porto S P S, and Tell B, Phys Rev 142 (1966) 570.

    Article  Google Scholar 

  4. Calleja J M and Cardona M, Phys Rev B 16 (1977) 3753.

    Article  Google Scholar 

  5. Yi G C, Wang C, and Park W II, Semicond Sci Technol 20 (2005) S22.

    Article  Google Scholar 

  6. Wager J F, Science 300 (2003) 1245.

    Article  Google Scholar 

  7. Samanta P K, Opt Photon Lett 4 (2011) 35.

    Article  Google Scholar 

  8. Sun Y, Riley D J, and Ashfold M N R, J Phys Chem B 110 (2006) 15186.

    Article  Google Scholar 

  9. Zhang R, Yin P G, Wang N, and Guo L, Solid State Sci 11 (2009) 865.

    Article  Google Scholar 

  10. Gao T and Wang T H, Appl Phys A 80 (2005) 1451.

    Article  Google Scholar 

  11. Djurišić A B, Leung Y H, Choy W C H, Cheah K W, and Chan W K, Appl Phys Lett 84 (2004) 2635.

    Article  Google Scholar 

  12. Ahmed F, Kumar S, Arshi N, Anwar M S, and Prakash R, Adv Mater Lett 2(3) (2011) 183.

    Article  Google Scholar 

  13. Xu C, Xu G, Liu Y, and Wang G, Solid State Commun 122 (2002) 175.

    Article  Google Scholar 

  14. Solís-Pomar F, Martinez E, Meléndrez M F, and Tijerina E P, Nanoscale Res Lett 6 (2011) 524.

    Article  Google Scholar 

  15. Nozaki S, Sarangi S N, Uchida K, and Sahu S N, Soft Nanosci Lett 3 (2013) 23.

    Article  Google Scholar 

  16. Nayak J, Sahu S N, Kasuya J, and Nozaki S, J Phys D Appl Phys 41 (2008) 115303.

    Article  Google Scholar 

  17. Zhang Y, Jia H, Wang R, Chen C, Luo X, and Yu D, Appl Phys Lett 83 (2003) 4631.

    Article  Google Scholar 

  18. Jia G Z, Wang Y F, and Yao J H, J Phys Chem Solids 73 (2012) 495.

    Article  Google Scholar 

  19. Umar A, Ibeiro C R, Al-Hajry A, Masuda Y, and Hahn Y B, J Phys Chem C 113 (2009) 14715.

    Article  Google Scholar 

  20. Jia G, Wang Y, and Yao J, Digest J Nanomater Biostruct 7 (2012) 261.

  21. Cuscó R, A-lladó E, Artús L, Jiménez J, and Callahan M J, Phys Rev B 75 (2007) 165202.

    Article  Google Scholar 

  22. Srivastava K M K, Chhikara D, and Kumar M S, J Mater Sci Technol 27(8) (2011) 701.

    Article  Google Scholar 

  23. Roy V A L, Djurišić A B, Chan W K, Gao J, Lui H F, and Surya C, Appl Phys Lett 83 (2003) 141.

    Article  Google Scholar 

  24. Liu X, Wu X, Cao H, and Chang R P H, J Appl Phys 95 (2004) 3141.

    Article  Google Scholar 

  25. Shimogaki T, Okazaki K, Nakamura D, Higashihata M, Asano T, and Okada T, Opt Express 20 (2012) 15247.

    Article  Google Scholar 

  26. Liu F, Cao P J, Zhang H R, Shen C M, Wang Z, Li J Q, and Gao H J, J Cryst Growth 274 (2005) 126.

    Article  Google Scholar 

  27. Ridha N J, Jumali M H H, Umara A A, and Alosfur F, Int J Electrochem Sci 8, 4583 (2013).

    Google Scholar 

  28. Xu C, Chun J, and Kim D E, Appl Phys Lett 90 (2007) 083113.

    Article  Google Scholar 

  29. Gayen R N, Bhar R, and Pal A K, Ind J Pure Appl Phys 48 (2010) 385.

    Google Scholar 

  30. Yu W D, Li X M, and Gao X D, Appl Phys Lett 84 (2004) 2658.

    Article  Google Scholar 

  31. López-Romero S and García-H M, World J Condens Matter Phys 3 (2013) 152.

    Article  Google Scholar 

  32. Zhitao H, Sisi L, Jinkui C, and Yong C, J Semicond 34 (2013) 063002.

    Article  Google Scholar 

  33. Dai Y, Zhang Y, Li Q K, and Nan C W, Chem Phys Lett 358 (2002) 83.

    Article  Google Scholar 

  34. Fan H J, Scholz R, Kolb F M, and Zacharias M, Appl Phys Lett 85 (2004) 4142.

    Article  Google Scholar 

  35. Zhu G P, Xu C X, Wu X F, Yang Y, Sun X W, and Cui Y P, J Electron Mater 36 (2007) 494.

    Article  Google Scholar 

  36. Xiu F X, Mandalapu L J, Yang Z, and Liu J L, Appl Phys Lett 89 (2006) 052103.

    Article  Google Scholar 

  37. JeongT S, Han M S, and Youn C J, J Appl Phys 96 (2004) 175.

    Article  Google Scholar 

  38. Ryu Y R and Lee T S, Appl Phys Lett 83 (2003) 87.

    Article  Google Scholar 

  39. Stehr J E, Wang X J, Filipov S, Pearton S J, Ivanov I G, Chen W M, and Buyanova I A, J Appl Phys 113 (2013) 103509.

    Article  Google Scholar 

  40. Kung C -Y, Young S -L, Chen H -Z, Kao M -C, Horng L, Shih Y -T, Lin C -C, Lin T -T, and Ou C -J, Nanoscale Res Lett 7 (2012) 372.

    Article  Google Scholar 

  41. Lee W -J, Kang J, and Chang K J, J Korean Phys Soc 53 (2008) 196.

    Google Scholar 

  42. Chatterjee S, Behera A K, Banerjee A, Tribedi L C, Som T, and Ayyub P, Appl Surf Sci 258 (2012) 7016.

    Article  Google Scholar 

  43. Chen Z Q, Maekawa M, Kawasuso A, and Naramoto H, Phys Status Solidi C 4 (2007) 3646.

    Article  Google Scholar 

  44. Zhong H, Wang J, Chen X, Li Z, Xu W, and Lu W, J Appl Phys 99 (2006) 103905.

    Article  Google Scholar 

  45. Lee E -C and Chang K J, Phys Rev B 70 (2004) 115210.

    Article  Google Scholar 

  46. Lee Y B, Kwak C H, Seo S Y, Kim S H, Park C I, Kim B H, Park S H, Choi Y D, and Han S W, J Korean Phys Soc 56 (2010) 2050.

    Article  Google Scholar 

  47. Lupan O, Chow L, Ono L K, Cuenya B R, Chai G, Khallaf H, Park S, and Schulte A, J Phys Chem C 114 (2010) 12401.

    Article  Google Scholar 

  48. Guo S, Du Z, and Dai S, Phys Status Solidi B 246 (2009) 2329.

    Article  Google Scholar 

  49. Yu J, Xing H, Zhao Q, Mao H, Shen Y, Wang J, Lai Z, and Zhu Z, Solid State Commun 138 (2006) 502.

    Article  Google Scholar 

  50. Chen J T, Wang J, ZhuoR F, Yan D, Feng J J, Zhang F, and Yan P X, Appl Surf Sci 255 (2009) 3959.

    Article  Google Scholar 

  51. Chow L, Lupan O, Chai G, Khallaf H, Ono L K, Cuenya B R, Tiginyanu I M, Rsaki V V, Soneta V, and Schulte A, Sens Actuat 189 (2013) 399.

    Article  Google Scholar 

  52. Lee E, Lee S, Le W, and Lee C E, J Korean Phys Soc 56 (2010) 2108.

    Article  Google Scholar 

  53. Dhara S, Datta A, Wu C T, Lan Z H, Chen K H, Wang Y L, Chen L C, Hsu C W, Lin H M, and Chen C C, Appl Phys Lett 82 (2003) 451.

    Article  Google Scholar 

  54. Lee J-K, Harriman T A, Lucca D A, Jung H S, Ryan D B, and Nastasi M, Nucl Inst Methods Phys Res B 257 (2007) 71.

    Article  Google Scholar 

  55. Kutas A A, Kovyazina T V, Akimov A N, Gusakov G A, Komarov F F, Novikov A P, and Vlasukova L A, Mater Sci Eng B 34 (1995) 32.

    Article  Google Scholar 

  56. Arnau A, Aumayr F, Echenique P M, Grether M, Heiland W, Limburg J, Morgenstern R, Roncin P, Schippers S,. Schuch R, Stolterfoht N, Varga P, Zouros T Z M, and Winter H P, Surf Sci Rep 27 (1997) 113.

    Article  Google Scholar 

  57. Winter H and Aumayr F, J Phys B Phys. 32 (1999) R39.

    Article  Google Scholar 

  58. Aumayr F, Facsko S, El-Said A S, Trautmann C, and Schleberger M, J Phys 23 (2011) 393001.

    Google Scholar 

  59. Schenkel T, Hamza A V, Barnes A V, and Schneider Prog Surf Sci 61 (1999) 23.

  60. Currell F, Asada J, Ishii K, Minoh A, Motohashi K, Nakamura N, Nishizawa K, Ohtani S, Okazaki K, Sakurai M, Shiraishi H, Tsurubuchi S, and Watanabe H, J Phys Soc Jpn 65 (1996) 3186.

    Article  Google Scholar 

  61. Watanabe H, Sun J, Tonac M, Nakamura N, Sakurai M, Yamada C, Yoshiyasu N, and Ohtani S, Phys Rev A 75 (2007) 062901.

    Article  Google Scholar 

  62. Davydov V Y, Kitaev Y E, Goncharuk I N, Smirnov A N, Graul J, Semchinova O, Uffmann D, Smirnov M B, Mirgorodsky A P, and Evarestov R A, Phys Rev B 58 (1998) 12899.

    Article  Google Scholar 

  63. Kunert H W, Phys Status Solidi C 1 (2004) 206.

    Article  Google Scholar 

  64. Zhang X B, Taliercio, Kolliakos, and Lefebvre P, J Phys 13 (2001) 7053.

    Google Scholar 

  65. Cheng H-M, Lin K-F, Hsu H-C, and Hsieh W-F Appl Phys Lett 88 (2006) 261909.

    Article  Google Scholar 

  66. Sahoo S, Sivasubramanian V, Dhara S, and Arora A K, Solid State Commun 147 (2008) 271.

    Article  Google Scholar 

  67. Su X, Zhang Z, and Zhu M, Appl Phys Lett 88 (2006) 061913.

    Article  Google Scholar 

  68. Chakraborty S, Dhara S, Ravindran T R, Pal Sarkar S,Kamruddin M, and Tyagi A K, AIP Adv 1 (2011) 032135.

    Article  Google Scholar 

  69. Janotti A and Van de Walle C G, Rep Prog Phys 72 (2009) 126501.

    Article  Google Scholar 

  70. Li X L, Li C, Zhang Y, Chu D P, Milne W I, and Fan H J, Nanoscale Res Lett 5 (2010) 1836.

    Article  Google Scholar 

  71. Sun W-C, Yeh Y-C, Ko C-T, He J-H, and Chen M-J, Nanoscale Res Lett 6 (2011) 556.

    Article  Google Scholar 

  72. Dhara S and Giri P K, Funct Mat Res 1 (2011) 25.

    Article  Google Scholar 

  73. Mishra A K, Chaudhuri S K, Mukherjee S, Priyam A, and Das D, J Appl Phys 102 (2007) 103514.

    Article  Google Scholar 

  74. Fan H. J, Scholz R, Kolb F M, and Zacharias M, Appl Phys Lett 85 (2004) 4142.

    Article  Google Scholar 

  75. Tong Y, Liu Y, Shao C, Liu Y, Xu C, Zhang J, Lu Y, Shen D, and Fan X, J Phys Chem 110 (2006) 14714.

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to S. Nozaki and S. Sarangi for preparing samples and fruitful discussion. S. Das acknowledges the financial support received from the University of Electro-Communications (UEC) under the UEC-Postdoctoral Fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Ohashi, H. & Nakamura, N. Study of Interactions of Slow Highly Charged Bismuth Ions with ZnO Nanorods. Trans Indian Inst Met 69, 1087–1096 (2016). https://doi.org/10.1007/s12666-015-0625-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0625-6

Keywords

Navigation