Skip to main content
Log in

Mine tailings influencing soil contamination by potentially toxic elements

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The potentially hazardous contents of mine tailings can pose a serious threat to the environment. Tailings dispersed around the abandoned Monica mine (Bustarviejo) in the Autonomous Region of Madrid (Central Spain) were studied to determine the concentration of several potential toxic elements and their geochemical impact in the surrounding soils. A total of 17 surface soil samples were collected from both mixed sulfide mine tailings sites and unmined soils, within a radius of 1900 m from the mine entrance. The processing of minerals (basically arsenopyrite, matildite and sphalerite) produced tailings with a pH as low as 2.9. Elements such as As, Cu, Zn, Cd, Pb, W, Ag, Fe were found in very high concentrations, contaminating the soil to varying degrees (these elements were sometimes 10- to 20-times higher in the tailings than in the unmined soils). Given its short distance and accessibility from such a large city as Madrid, it is of undeniable environmental and educational interest. Among other factors, there is a need for improvements to tailings management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu MM, Matias MJ, Magalhães MC, Basto MJ (2016) Impacts on water, soil and plants from the abandoned Miguel vacas copper mine, Portugal. J Geochem Explor 96(2–3):161–170

    Google Scholar 

  • Acosta JA, Faz A, Martinez-Martinez S, Zornoza R, Carmona DM, Kabas S (2011) Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation. J Geochem Explor 109:8–17

    Article  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risk of metals, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Agrawal M, Singh J, Jha AK, Singh JS (1993) Coal-based environmental problems in a low rainfall tropical region. In: Keefer RF, Sajwan KS (eds) Trace elements in coal combustion residues. Lewis Publishers, Boca Raton, pp 27–57

    Google Scholar 

  • Angel P, Barton C, Warner R, Agouridis C, Taylor T, Hall S (2008) Tree growth, natural regeneration, and hydrologic characteristics of three loose-graded surface mine spoil types in Kentucky. In: Barnhisel RI (ed) Proceedings, 25th conference of the American Society of mining and reclamation. Lexington, pp 28–65

  • Aucamp P, van Schalkwyk A (2003) Trace element-pollution of soils by abandoned gold-mine tailings near Potchefstroom. S Afr Bull Eng Geol Environ 62:123–134

    Google Scholar 

  • Bini C (2012) Environmental impact of abandoned mine waste: a review. Nova, Hauppauge

    Google Scholar 

  • BOCM (2007) Orden 2720/2006, de 11 de agosto, por la que se establecen niveles genéricos de referencia de metales pesados y otros elementos de traza de suelos contaminados de la Comunidad de Madrid, vol 204. Comunidad de Madrid, Madrid, pp 29–30

    Google Scholar 

  • Boszke L, Sobczynski T, Kowalski A (2004) Distribution of mercury and other heavy metals in bottom sediments of the Middle Odra River (Germany/Poland). Polish J Environ Stud 13:495–502

    Google Scholar 

  • Bouso JL (2004) La antigua mina de plata de Bustarviejo. Rocas y minerales: Técnicas y procesos de minas y canteras, 391:24–29. ISSN:0378-3316

  • Bruce SL, Noller BN, Grigg AH, Mullen BF, Mulligan DR, Ritchie PJ, Currey N, Ng JC (2003) A field study conducted at Kidston Gold Mine, to evaluate the impact of arsenic and zinc from mine tailings to grazing cattle. Toxicol Lett 137:23–34

    Article  Google Scholar 

  • Conde P, Bellido E, Martín Rubí JA, Jiménez Ballesta R (2008) Concentration and spatial variability of mercury and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén mining district (Spain). Env Geol 56(5):815–824

    Google Scholar 

  • Dang Z, Liu C, Haigh MJ (2002) Mobility of heavy metals associated with the natural weathering of coal mine soils. Environ Pollut 118:419–426

    Article  Google Scholar 

  • De Miguel E, Callaba A, Arranz JC, Cala V, Chacón E, Gallego E, Alberuche E. Alonso C, Fernández-Canteli P, Iribarren I, Palacios H (2002) Determinación de niveles de fondo y niveles de referencia de metales pesados y otros elementos traza en suelos de la Comunidad de Madrid. Serie Medio Ambiente, Terrenos contaminados, no 2, Instituto Geológico y Minero de España, Madrid, p 167

  • Duffus JH (2002) Heavy metals—a meaningless term? Pure Appl Chem 74(5):793–807

    Article  Google Scholar 

  • FAO-ISRIC-ISSS (2006) World reference base for soil resources. A framework for international classification, correlation and communication. World soil resources reports 103, p 132

  • Fernández-Caliani JC, Barba-Brioso C, González I, Galán E (2009) Heavy metal pollution in soils around the abandoned mine sites of the Iberian pyrite belt (South-west Spain). Water Air Soil Pollut 200:211–226

    Article  Google Scholar 

  • García-Salgado S, Quijano MA (2014) Levels of toxic arsenic species in native terrestrial plants from soils polluted by former mining activities. Environ Sci Process Impacts 16:604–612

    Article  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd edn. Madison, ASA-SSSA, pp 383–411 (Agronomy Monograph No. 9)

    Google Scholar 

  • Grangeia C, Avila P, Matias M, Ferreira da Silva E (2011) Mine tailings integrated investigations: the case of Rio tailings (Panasqueira Mine, Central Portugal). Eng Geol 123(4):359–372

    Article  Google Scholar 

  • Haigh M (1992) Problems in the reclamation of coal-mine disturbed lands in Wales. Int J Surf Min Reclam 6:31–37

    Article  Google Scholar 

  • Hasan AB, Sohail Kabir AHM, Reza S, Zaman MN, Ahsan A, Rashid M (2013) Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary–Kumira), Chittagong, Bangladesh. J Geochem Explor 125:130–137

    Article  Google Scholar 

  • He-rong G, Man-li L, Wei-hua P (2015) Heavy metals in coal mine groundwater responding to mining activity: concentration, temporal variation and speciation. Water Pract Technol 10(2):390–401

    Article  Google Scholar 

  • Hooda PS (ed) (2010) Trace elements in soils. Wiley, Chichester. http://ec.europa.eu/environment/integration/research/newsalert/pdf/230na6.pdf

  • Hu Z, Caudle RD, Chong SK (1992) Evaluation of firm land reclamation effectiveness based on reclaimed mine properties. Int J Surf Min Reclam Environ 6:129–135

    Article  Google Scholar 

  • Jiménez Ballesta R, Conde Bueno P, Martín Rubí JÁ, García Giménez R (2010) Pedo-geochemical baseline content levels and soil quality reference values of trace elements in soils from the Mediterranean (Castilla la Mancha, Spain). Cent Eur J Geosci 2(4):441–454

    Google Scholar 

  • Jiménez R, Jordá L, Jordá R, Prado P (2004) Madrid: la minería metálica desde 1417 hasta nuestros días. Bocamina 14:89–91

    Google Scholar 

  • Jordá L (2003) Breve historia de la minería de los metales en la Comunidad de Madrid. Tierra y Tecnología 25:63–68 (in Spanish)

    Google Scholar 

  • Jordá L (2008) La Minería de los metales en la provincia de Madrid: Patrimonio Minero y puesta en valor del espacio subterráneo. Doctoral thesis. Universidad Politécnica de Madrid, p 780 (in Spanish)

  • Jordá L, Puche O, Mazadiego LF (2005) La minería de los metales y la metalurgia en Madrid (1417–1983). Ed Instituto Geológico y Minero de España. Serie Recursos Minerales n. 7, p 192 (in Spanish)

  • Kim M, Jung Y (2004) Vertical distribution and mobility of arsenic and heavy metals in and around mine tailings of an abandoned mine. J Environ Sci Health Part A 39:203–222

    Article  Google Scholar 

  • Kisch H (1990) Recommendations on illite crystallinity. IGCP Project 294, VIGM, pp 1–9

  • Koushik S, Kalyan A, Anuruddha G (2012) Effect of mine spoil on native soil of Lower Gondwana coal fields: Raniganj coal mines areas, India. Int J Environ Sci 2(3):1675–1687

    Google Scholar 

  • Lee M, Paik I, Kim I, Kang H, Lee S (2007) Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate. J Hazard Mater 144:208–214

    Article  Google Scholar 

  • Lee H, Kabir MI, Kwon PS, Kim JM, Kim JG, Hyun SH, Rim YT, Bae MS, Ryu ER, Jung MS (2009) Contamination assessment of abandoned mines by integrated pollution index in the Han River watershed. Open Environ Pollut Toxicol J 1:27–33

    Article  Google Scholar 

  • Li XY, Liu LJ, Wang YG, Luo GP, Chen X, Yang XL, Gao B, He XY (2012) Integrated assessment of heavy metal contamination in sediments from a coastal industrial basin, NE China. PLoS One 7(6):e39690. doi:10.1371/journal.pone.0039690

    Article  Google Scholar 

  • Li Z, Ma Z, Jan T, van der Kuijp Z, Yuan LH (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853

    Article  Google Scholar 

  • Lim HS, Lee JS, Chon HT, Sager M (2008) Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. J Geochem Explor 96:223–230

    Article  Google Scholar 

  • Liu HY, Probst A, Liao BH (2005) Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci Total Environ 339:153–166

    Article  Google Scholar 

  • Maiti SK (2003) Moef report, an assessment of overburden dump rehabilitation technologies adopted in CCL, NCL, MCL, and SECL mines (Grant No. J-15012/38/98-IA IIM)

  • Maiti SK (2007) Bioreclamation of coalmine overburden dumps—with special emphasis on micronutrients and heavy metals accumulation in tree species. Environ Monit Assess 125:111–122

    Article  Google Scholar 

  • Martín Peinado FJ, Romero-Freire A, García Fernández I, Sierra Aragón M, Ortiz-Bernad I, Simón Torres M (2015) Long-term contamination in a recovered area affected by a mining spill. Sci Total Environ 514:219–223

    Article  Google Scholar 

  • Martín-Moreno C, Martín Duque JF, Nicolau Ibarra JM, Hernando Rodríguez N, Sanz Santos MA, Sánchez Castillo L (2016) Effects of topography and surface soil cover on erosion for mining reclamation: the experimental spoil heap at El Machorro Mine (Central Spain). Land Degrad Dev 27(2):145–159

    Article  Google Scholar 

  • Moreno MR, Cala Rivero V, Jiménez Ballesta R (2005) Selenium distribution in topsoils and plants of a semi-arid Mediterranean environment. Environ Geochem Health 27:513–519

    Article  Google Scholar 

  • Moreno-Jiménez E, Peñalosa JM, Manzano R, Carpena-Ruiz RO, Gamarra R, Esteban E (2009) Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. J Hazard Mater 162:854–859

    Article  Google Scholar 

  • Moreno-Jiménez E, Manzano R, Esteban E, Peñalosa J (2010) The fate of arsenic in soils adjacent to an old mine site (Bustarviejo, Spain): mobility and transfer to native flora. J Soils Sediments 10:301–312

    Article  Google Scholar 

  • Mu Y, Yuee H, Jun L, Chaopin L (2015) Characterization of heavy metals in soil near coal mines and a power plant in Huainan, China. Anal Lett 48(4):726–737

    Article  Google Scholar 

  • Müller G (1979) Index of geoaccumulation in sediments of the Rhine River. Geojournal 2:108–118

    Google Scholar 

  • Pederson TA, Rogowski AS, Pennock R (1988) Physical characteristics of some mine spoils. Soil Sci Soc Am J 144:131–140

    Google Scholar 

  • Puche O, García I, Mazadiego LF (2000) El Patrimonio Minero de la mina del Cerro de la Plata de Bustarviejo (Madrid). III Reunión Científica de la SEDPGYM. Patrimonio Minero- Metalúrgico, 13–15 Noviembre 1998. La Rábida (Huelva), 15 pp, in: Actuaciones sobre Patrimonio Minero- Metalúrgico. Servicio de Publicaciones de la Universidad de Huelva (in Spanish)

  • Rodríguez L, Ruiz E, Aloso-Azcárate J, Rincón J (2009) Heavy metal distribution and chemical speciation in tailing and soils around a Pb–Zn mine in Spain. J Environ Manag 90:1106–1116

    Article  Google Scholar 

  • Sencindiver JC, Ammons JT (2000) Minesoil genesis and classification. In: Barnhisel RI, Darmody RG, Daniels WL (eds) Reclamation of drastically disturbed lands. Agronomy Monograph No. 41, ASA, CSSA, SSSA, Madison, pp 595–613

    Google Scholar 

  • Smart D, Callery S, Courtney R (2015) The Potential for waste-derived materials to form soil covers for the restoration of Mine Tailings in Ireland. Land Degrad Dev 27:542–549. doi:10.1002/ldr.2465

    Article  Google Scholar 

  • Soil Survey Staff (2006) Keys to soil taxonomy, 10th edn. U.S Department of Agriculture, Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Soulard CE, Acevedo W, Stehman SV, Parker OP (2016) Mapping extent and change in surface mines within the United States for 2001 to 2006. Land Degrad Dev 2(2):248–257. doi:10.1002/ldr.2412

    Article  Google Scholar 

  • Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL (ed) Methods of soil analysis: chemical methods. Part 3. Soil Sci Soc Am, Madison

    Google Scholar 

  • USEPA (1994) Design and evaluation of tailings dams. Technical report—EPA530-R-94-038. USEPA, Office of Solid Waste, Special Waste Branch, Washington

  • VROM (2000) Circular on target values and intervention values for soil remediation Netherlands Ministry of Housing. Spatial Planning and Environment, The Hague

    Google Scholar 

  • Wray DS (1998) The impact of unconfined mine tailings and anthropogenic pollution on a semi-arid environment—an initial study of the Rodalquilar mining district, South East Spain. Environ Geochem Health 20:29–38

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers of this paper for providing constructive comments, which have contributed to the improvement of the present version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimundo Jiménez-Ballesta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Giménez, R., Jiménez-Ballesta, R. Mine tailings influencing soil contamination by potentially toxic elements. Environ Earth Sci 76, 51 (2017). https://doi.org/10.1007/s12665-016-6376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6376-9

Keywords

Navigation