Skip to main content
Log in

KARSYS hydrogeological 3D modeling of alpine karst aquifers developed in geologically complex areas: Picos de Europa National Park (Spain)

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Karst aquifers are valuable groundwater resources whose management requires the use of functioning hydrogeological models. The KARSYS approach provides an explicit 3D conceptual model of the geometry and the functioning of karst aquifers that has been successfully applied in Swiss and Slovenian aquifers. In this work, KARSYS is applied in a complex geological area: the Picos de Europa National Park (Spain). The hydrogeological 3D model (500 km2) shows an alpine karst aquifer compartmentalized into 32 groundwater bodies dammed up by subvertical barriers creating elevated saturated zones (water tables at 1153 m asl) and lower ones (water tables at 145 m asl). The recharge is through 18 spring catchment areas. The groundwater flows to the saturated zones pass through vertical to inclined trajectories, and phreatic flows are oriented toward NW, NE and N. KARSYS can be applied to any geologically complex area at a regional scale, although the geological structure should be simplified and the precision in some places is low. Nevertheless, KARSYS helps to identify the hydrogeological behavior of karst areas and is a useful guide for future hydrogeological researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alonso J, Marcos A, Suárez A (2009) Paleogeographic inversion resulting from large out of sequence breaching thrusts: the León Fault (Cantabrian Zone, NW Iberia). A new picture of the external Variscan Thrust Belt in the Ibero-Armorican Arc. Geol Acta 4:451–473. doi:10.1344/105.000000

    Google Scholar 

  • Audra P, Palmer AN (2013) The vertical dimension of karst: controls of vertical cave pattern. In: Shroder JF (ed) Treatise Geomorphol, vol 6. Academic Press, San Diego, pp 186–206

    Chapter  Google Scholar 

  • Bahamonde J, Vera C, Colmenero JR (2000) A steep-fronted Carboniferous carbonate platform: clinoformal geometry and lithofacies (Picos de Europa, NW Spain). Sedimentology 47:645–664

    Article  Google Scholar 

  • Bahamonde J, Merino-Tomé O, Heredia N (2007) A Pennsylvanian microbial boundstone-dominated carbonate shelf in a distal foreland margin (Picos de Europa Province, NW Spain). Sediment Geol 198:167–193. doi:10.1016/j.sedgeo.2006.12.004

    Article  Google Scholar 

  • Bahamonde J, Merino-Tomé O, Della Porta G (2014) Pennsylvanian carbonate platforms adjacent to deltaic systems in an active marine foreland basin (Escalada Fm., Cantabrian Zone, NW Spain). Basin Res 27:208–229. doi:10.1111/bre.12068

    Article  Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160. doi:10.1007/s10040-004-0402-9

    Article  Google Scholar 

  • Ballesteros D, Jiménez-Sánchez M, Giralt S, García-Sansegundo J, Meléndez-Asensio M (2015) A multi-method approach for speleogenetic research on alpine karst caves. Torca La Texa shaft, Picos de Europa (Spain). Geomorphology 247:35–54. doi:10.1016/j.geomorph.2015.02.026

    Article  Google Scholar 

  • Ballesteros D, Puerta Elorza E, Fernández Valencia R, de Felipe Pitcairn J (2010) Torca Teyera. Subterránea 30:24–26

    Google Scholar 

  • Ballesteros D, Jiménez-Sánchez M, García-Sansegundo J, Giralt S (2011) Geological methods applied to speleogenetical research in vertical caves: the example of Torca Teyera shaft (Picos de Europa, Northern Spain). Carbonates Evaporites 26:29–40. doi:10.1007/s13146-011-0052-7

    Article  Google Scholar 

  • Ballesteros D, Jiménez-Sánchez M, García-Sansegundo J, Borreguero M (2014) SpeleoDisc: a 3-D quantitative approach to define the structural control of endokarst. An application to deep cave systems from the Picos de Europa, Spain. Geomorphology 216:141–156. doi:10.1016/j.geomorph.2014.03.039

    Article  Google Scholar 

  • Borghi A, Renard P, Jenni S (2012) A pseudo-genetic stochastic model to generate karstic networks. J Hydrol 414–415:516–529. doi:10.1016/j.jhydrol.2011.11.032

    Article  Google Scholar 

  • Briggs MA (2012) Using emerging methods to investigate stream and groundwater interaction at multiple spatial scales. Earth Sci-Diss 27:1–163

    Google Scholar 

  • Butscher C, Huggenberger P (2007) Implications for karst hydrology from 3D geological modeling using the aquifer base gradient approach. J Hydrol 342:184–198. doi:10.1016/j.jhydrol.2007.05.025

    Article  Google Scholar 

  • Calcagno P, Chilès JP, Courrioux G, Guillen A (2008) Geological modelling from field data and geological knowledge. Phys Earth Planet Inter 171:147–157. doi:10.1016/j.pepi.2008.06.013

    Article  Google Scholar 

  • Chen Z, Goldscheider N (2014) Modeling spatially and temporally varied hydraulic behavior of a folded karst system with dominant conduit drainage at catchment scale, Hochifen–Gottesacker, Alps. J Hydrol 514:41–52. doi:10.1016/j.jhydrol.2014.04.005

    Article  Google Scholar 

  • Collignon B (1986) Quelques elements de geologie et D’Hydrogeologie. Spelunca Suppl 19:7–12

    Google Scholar 

  • Diañu Burlón GE, Cuasacas AD (2013) Exploraciones 2.012. Canal de Canraso-Llanos del Burdio (Macizo Occidental-Picos de Europa). GE Diañu Burlón, Corvera de Asturias, Spain

  • Erra J, Genuite P, Renous N, Vidal B (1999) La Torca del Cerro (-1589) et le secteur du Trave. Spelunca 74:26–50

    Google Scholar 

  • Fabre J-P, Fabriol R (1984) Résultats de deux traçages réalisés dans l’amphithéâtre d’Ozania (Picos de Europa, Espagne). Karstologia 4:35–37

    Google Scholar 

  • Gale S (1983) Water tracing in the Western Picos de Europa, Asturias, Northern Spain. Proc Oxf Univ Cave Club 11:33–35

    Google Scholar 

  • Giudici M, Margiotta S, Mazzone F et al (2012) Modelling hydrostratigraphy and groundwater flow of a fractured and karst aquifer in a Mediterranean basin (Salento peninsula, southeastern Italy). Environ Earth Sci 67:1891–1907. doi:10.1007/s12665-012-1631-1

    Article  Google Scholar 

  • Gondwe BRN, Merediz-Alonso G, Bauer-Gottwein P (2011) The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst. J Hydrol 400:24–40. doi:10.1016/j.jhydrol.2011.01.023

    Article  Google Scholar 

  • Horsley D, Roberts S, Arthur J, Taylor R (1989) 1989 “Juracao” expedition final report. Oxford Univ Cave Club, Oxford, UK

  • Jaquet O, Siegel P, Klubertanz G, Benabderrhamane H (2004) Stochastic discrete model of karstic networks. Adv Water Resour 27:751–760. doi:10.1016/j.advwatres.2004.03.007

    Article  Google Scholar 

  • Jeannin P-Y, Eichenberger U, Sinreich M et al (2013) KARSYS: a pragmatic approach to karst hydrogeological system conceptualisation. Assessment of groundwater reserves and resources in Switzerland. Environ Earth Sci 69:999–1013. doi:10.1007/s12665-012-1983-6

    Article  Google Scholar 

  • Jędrzejczak M (2001) Western Massif (El Cornion) of the Picos de Europa (Asturias, Spain). Publ. 13th Int. Speleol. Congr. Sociedade Brasileira de Espeleologia, Brasilia, DF, Brasil, pp 25–28

  • Jiménez-Sánchez M, Ballesteros D, Rodríguez-Rodríguez L, Domínguez Cuesta MJ (2014) The Picos de Europa National and Regional Parks. In: Gutiérrez F, Guitiérrez M (eds) Landsc. Landforms Spain. Springer Science + Business Media, Dordrecht, pp 155–163

    Chapter  Google Scholar 

  • Karimi H (2012) Hydrogeology of Karstic area. In: Kazemi A (ed) Hydrogeology—a global perspective. Intech, Rijeka, pp 1–42

    Google Scholar 

  • Kiraly L (2003) Karstification and groundwater flow. Speleogenes Evol Karst Aquifers 1:1–26

    Google Scholar 

  • Li G, Field MS (2014) A mathematical model for simulating spring discharge and estimating sinkhole porosity in a karst watershed. Grundwasser 19:51–60. doi:10.1007/s00767-013-0243-3

    Article  Google Scholar 

  • Liautaud J-P (1985) 20 ans de spéléologie aux Picos de Europa, Espagne (1964–1984). Spéléo Club Alpine Languedocien, Montpellier

    Google Scholar 

  • Lloyd DK (1990) Water Tracing in the Vega Huerta Caves, Picos de Europa, Spain. Cave Sci 17:103–106

    Google Scholar 

  • Malard A, Jeannin P-Y (2013) Characterisation of karst aquifers in Switzerland: the KARSYS approach. Eur Geol 35:59–63

    Google Scholar 

  • Malard A, Jeannin P-Y, Sinreich M et al (2014) Praxisorientierter Ansatz zur kartographischen Darstellung von Karst-Grundwasserressourcen. Grundwasser 19(4):237–249. doi:10.1007/s00767-014-0271-7

    Article  Google Scholar 

  • Malard A, Jeannin P-Y, Rickerl D (2015) Impact of a tunnel on a karst aquifer: application on the Brunnmühle springs (Bernese Jura, Switzerland). In: Andreo B, Carrasco F, Durán JJ et al (eds) Hydrogeol Environ Investig Karst Syst. Springer, Berlin, Heidelberg, Berlin, Germany, pp 457–463

    Google Scholar 

  • Margaliano D, Muñoz J, Estévez JA (1998) 1.589 m Récord de España en la Torca del Cerro del Cuevón. Subterránea 10:20–29

    Google Scholar 

  • Martínez-García E (2013) An Alleghenian orocline: the Asturian Arc, northwestern Spain. Int Geol Rev 55:367–381. doi:10.1080/00206814.2012.713544

    Article  Google Scholar 

  • Maurice L, Greaves H (2008) Dyetrace report. A caving cave diving expedition to Picos de Europa. In: Greaves H (ed) Julagua 2008. Oxford Univ Cave Club, Oxford, pp 16–17

    Google Scholar 

  • Merino-Tomé O, Bahamonde JR, Colmenero JR et al (2009) Emplacement of the Cuera and Picos de Europa imbricate system at the core of the Iberian-Armorican arc (Cantabrian zone, north Spain): new precisions concerning the timing of arc closure. Geol Soc Am Bull 121:729–751. doi:10.1130/B26366.1

    Article  Google Scholar 

  • Merino-Tomé O, Suárez Rodríguez A, Alonso J et al (2013a) Mapa Geológico Digital continuo E. 1:50.000, Principado de Asturias (Zonas: 1100-1000-1600). Instituto geológico y Minero de España. http://cuarzo.igme.es/sigeco/default.htm. Accessed 5 Nov 2012

  • Merino-Tomé O, Suárez Rodríguez A, Alonso J (2013b) Mapa Geológico Digital continuo E. 1: 50.000, Zona Cantábrica (Zona-1000). Instituto geológico y Minero de España. http://cuarzo.igme.es/sigeco/default.htm Accessed 5 Nov 2012

  • Milanović S, Stevanović Z, Vasić L, Ristić-Vakanjac V (2014) 3D modeling and monitoring of karst system as a base for its evaluation and utilization: a case study from eastern Serbia. Environ Earth Sci 71:525–532. doi:10.1007/s12665-013-2591-9

    Article  Google Scholar 

  • Mohrlok U (2014) Numerical simulation of groundwater flow in the Gallusquelle catchment by determining a drainage system. Grundwasser 19:73–85. doi:10.1007/s00767-013-0249-x

    Article  Google Scholar 

  • Mumford N, Cooper J (1998) Looking into Egbert (Pozo Jultayu 1998, Picos de Europa). Caves and Caving 83:24–29

    Google Scholar 

  • Ogando E (2007) Exploraciones verticales Colectivo Picos de Europa. Boletín Cántabro Espeleol 16:42–51

    Google Scholar 

  • Parise M, Sammarco M (2014) The historical use of water resources in karst. Environ Earth Sci 1–10. doi:10.1007/s12665-014-3685-8

  • Pastor-Galán D, Martín-Merino G, Corrochano D (2014) Timing and structural evolution in the limb of an orocline: the Pisuerga–Carrión Unit (southern limb of the Cantabrian Orocline, NW Spain). Tectonophysics. doi:10.1016/j.tecto.2014.03.004

  • Pérez J, Sanz E (2011) Hydrodynamic characteristics and sustainable use of a karst aquifer of high environmental value in the Cabrejas range (Soria, Spain). Environ Earth Sci 62:467–479. doi:10.1007/s12665-010-0540-4

    Article  Google Scholar 

  • Regli C, Kleboth P, Eichenberger U et al (2014) First insights in the prospection and characterization of the aquifer of the Arosa Dolomites, Switzerland. Grundwasser 19:29–38. doi:10.1007/s00767-013-0250-4

    Article  Google Scholar 

  • Rongier G, Collon-Drouaillet P, Filipponi M (2014) Simulation of 3D karst conduits with an object-distance based method integrating geological knowledge. Geomorphology 217:152–164. doi:10.1016/j.geomorph.2014.04.024

    Article  Google Scholar 

  • Segovia Rosales R, Sanz Pérez E, Menéndez Pidal I (2007) Contribution of tracers for understanding the hydrodynamics of karstic aquifers crossed by allogenic rivers, Spain. In: Elango L (ed) Hydraul. Conduct.—Issues, Determ. Appl. Intech, Rijeka, Croatia

  • Senior KJ (1987) Geology and speleogenesis of the M2 cave system, Western Massif, Picos de Europa, Northern Spain. Cave Sci 14:93–103

    Google Scholar 

  • Turk J, Malard A, Jeannin P et al (2013) Interpretation of hydrogeological functioning of a high karst plateau using the KARSYS approach: the case of Trnovsko-Banjška planota (Slovenia). Acta Carsologica 42:61–74

    Article  Google Scholar 

  • Turk J, Malard A, Jeannin P-Y et al (2015) Hydrogeological characterization of groundwater storage and drainage in an alpine karst aquifer (the Kanin massif, Julian Alps). Hydrol Process 29(8):1986–1998. doi:10.1002/hyp.10313

    Article  Google Scholar 

  • Willis R (1981) Pozu del Xitu—1981 dye tests. Proc Oxf Univ Cave Club 10:49–50

    Google Scholar 

  • Worthington S, Ford D (2009) Self-organized permeability in carbonate aquifers. Ground Water 47:326–336

    Article  Google Scholar 

Download references

Acknowledgments

This work is a contribution of the GEOQuo Research Group (University of Oviedo). The research has been funded through the GEOCAVE project (MAGRAMA-580/12-OAPN), the project Hydrogeological investigations in the groundwater units 016.214 Picos de Europa-Panes and 016.218 Alto Deva-Alto Cares (IGME-2256/2013) and two fellowships granted to D. Ballesteros (Severo Ochoa Program, FICYT-Asturias; Development Strategic Plan and Conversion Feasibility Campus of International Excellence, Asturias-University of Oviedo). The dye tracings were done with the collaboration of the GE Polifemo, OUCC, GE Diañu Burlón, AD Cuasacas, S Wroclaw and SIS-CE Terrassa. Cave data were provided by Expeditions to Castil, GE Gorfolí, GE Matallana, GEMA, GS Matese, GERSOP, GE Llubí, ANEM, GSD, HPS, IEV, Cocktail Picos, L’Esperteyu CEC, LUSS, CDG, CADE, SAR d’Ixelles, ERE, SCOF, SCS Matese, SEB Escar, SIE Áliga, GEG, WCC, GET, SSS, YUCPC, Llambrión-Project, Centro Documentación y Museo Espeleología, C. Puch (STD-BAT), J. Alonso, J. Sánchez (CES Alfa), B. Hivert (AS Charentaise) and V. Ferrer. Moreover, we thank the collaboration of the French Geological Survey (BRGM), trough of G. Courrioux and H. Fabriol and the help of Ó. Merino-Tomé, J.R. Bahamonde, L. Gonzalo and B. Gutiérrez (University of Oviedo) and the Picos de Europa National Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ballesteros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballesteros, D., Malard, A., Jeannin, PY. et al. KARSYS hydrogeological 3D modeling of alpine karst aquifers developed in geologically complex areas: Picos de Europa National Park (Spain). Environ Earth Sci 74, 7699–7714 (2015). https://doi.org/10.1007/s12665-015-4712-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4712-0

Keywords

Navigation