Skip to main content

Advertisement

Log in

Impact of glacier changes on ecosystem of proglacial lakes in high mountain regions of East Siberia (Russia)

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Mountain lakes in East Siberia have been studied for recent changes in water chemistry, turbidity and diatom assemblages preserved in bottom sediments. We performed a regional analysis of the relative effect of climate and glacier changes on change in diatom diversity and supply of meltware in proglacial lakes. We analysed sediment records from East Siberian glacier lakes using geochemical and diatoms proxies. We found that dramatic changes in communities and abundance of diatoms and biogenic proxy could be induced by low nutrient concentrations in glacial lakes and high turbidity due to active degradation of glaciers and snow patches as a result of the global increase in temperature in the Northern Hemisphere. Our evidences show that diatoms have been gradually decreased since ca. the 1880s. A significant tendency towards diatom reducing occurred at high summer regional temperatures. This tendency may be attributed to the fact that glaciers and snow patches thawed actively in East Siberia during ca. 1880–1958, which was induced by the beginning of the Recent Warming (ca. 1850–1860) and a long period of relatively warm regional climate from ca. 1900 to 1960.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamenko MM, Gutak YaM, Solomina ON (2015) Glacial history of the Kuznetsky Alatau mountains. TI Glacier in Asia. Environ Earth Sci (this issue)

  • Back S, Strecker MR (1998) Asymmetric late Pleistocene glaciations in the North Basin of the Baikal Rift, Russia. J Geol Soc 155:61–69

    Article  Google Scholar 

  • Battarbee RW, Grytnes J-A, Thompson R, Appleby PG, Catalan J, Korhola A, Birks HJB, Heegaard E, Lami A (2002) Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J Paleolimnol 28:161–179

    Article  Google Scholar 

  • BDP Members (Baikal Drilling Project Group) (2000) Late Cenozoic paleoclimate record in bottom sediments of Lake Baikal. Russ Geol Geophys 41:1–29

    Google Scholar 

  • BDP-99 (Baikal Drilling Project Members) (2005) A new Quaternary record of regional tectonic, sedimentation and paleoclimate changes from drill core BDP-99 at Posolskaya Bank, Lake Baikal. Quater Inter 136:105–121

    Article  Google Scholar 

  • Bezrukova EV, Bogdanov YA, Williams DF, Granina LZ, Grachev MA, Ignatova NV, Karabanov EB, Kuptsov VM, Kurylev AV, Letunova PP, Likhoshway EV, Chernyaeva GP, Shimaraeva MK, Yakujshin AO (1991) A dramatic change of the ecological system of Lake Baikal in the Holocene. Dokl Akad Nauk SSSR 321:1032–1037 (In Russian)

    Google Scholar 

  • Binford MW (1990) Calculation and uncertainty analysis of 210Pb dates for PIRLA project cores. J Paleolimnol 3:253–267

    Article  Google Scholar 

  • Bradbury JP, Bezrukova YV, Chernyaeva GP, Colman SM, Khursevich G, King JW, Likoshway YV (1994) A synthesis of post-glacial diatom records from Lake Baikal. J Paleolimnol 10:213–252

    Article  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov EA (2001) Low-frequency temperature variations from a northern tree ring density network. J Geophys Res 106:2929–2941

    Article  Google Scholar 

  • Catalan J, Ventura M, Brancelj A, Granados I, Thies H, Nickus U et al (2002) Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J Paleolimnol 28:25–46

    Article  Google Scholar 

  • Chebykin EP, Osipov EY (2010) The elemental composition of snow and firn of the Soviet Geographers’ glacier and allied hydrological features (Kodar ridge). Led i Sneg 4:30–40 (In Russian)

    Google Scholar 

  • Curtis CJ, Botev I, Camarero L et al (2005) Acidification in European mountain lake districts: a regional assessment of critical load exceedance. Aquat Sci 67:237–251

    Article  Google Scholar 

  • D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res 111:D03103. doi:10.1029/2005JD006352

    Google Scholar 

  • Davydova NN (1985) Diatoms as indicators of Holocene lake environments. In: Trifonova IS (ed). Nauka, Leningrad (In Russian)

  • Evans CD, Cullen JM, Alewell C, Kopácek J, Marchetto A, Moldan F, Prechtel A, Rogora M, Veselý J, Wright R (2001) Recovery from acidification in European surface waters. Hydrol Earth Syst Sci 5(3):283–297

    Article  Google Scholar 

  • Fedotov AP, Bezrukova EV, Vorobyova SS, Khlystov OM, Levina OV, Mizandrontsev IB, Mazepova GP, Semenov AR, Zheleznyakova TO, Krapivina SM, Chebykin EP, Grachev MA (2001) The sediments of Lake Khubsugul as history of paleoenvironmental records (paleoclimates) in the Holocene and the Upper Pleistocene. Russ Geol Geophys 42:384–390

    Google Scholar 

  • Fedotov AP, Chebykin EP, Semenov MY, Vorobyova SS, Osipov EY, Golobokova LP, Pogodaeva TV, Zheleznyakova TO, Grachev MA, Tomurhuu D, Oyunchimeg Ts, Narantsetseg Ts, Tomurtogoo O, Dolgikh PT, Arsenyuk MI, De Batist M (2004) Changes in the volume and salinity of lake Khubsugul (Mongolia) in response to global climate changes in the upper Pleistocene and the Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 209:245–257

    Article  Google Scholar 

  • Fedotov AP, Phedorin MA, De Batist M, Ziborova GA, Kazansky AY, Semenov MY, Matasova GG, Khabuev AV, Kugakolov SA, Rodyakin SV, Krapivina SM, Pouls T (2008) A 450-ka long record of glaciation in Northern Mongolia based on studies at Lake Khubsugul: high-resolution reflection seismic data and grain-size variations in cored sediments. J Paleolimnol 39:335–348

    Article  Google Scholar 

  • Fedotov AP, Trunova VA, Zvereva VV, Maksimovskaya VV, Melgunov MS (2012) Reconstruction of glacier fluctuation (East Siberia, Russia) during the last 160 years based on high-resolution geochemical proxies from proglacial lake bottom sediments of the Baikalsky Ridge. Int J Environ Stud 69(5):806–815

    Article  Google Scholar 

  • Ganyushkin DA, Chistyakov FV, Kunaeva EP (2015) Fluctuation of glaciers in the South-East Russian Altai and North-West Mongolia Mountains since the Little Ice Age maximum. TI Glacier in Asia. Environ Earth Sci (this issue). doi:10.1007/s12665-015-4301-2

  • Gasiorowski M, Sienkiewicz E (2010) 20th century acidification and warming as recorded in two alpine lakes in the Tatra Mountains (South Poland, Europe). Sci Total Environ 408:1091–1101

    Article  Google Scholar 

  • Genkal SI, Bondarenko NA (2004) Bacillariophyta in plankton of mountain lakes in the River Lena watershed. 1. Centrophyceae. Botanicheskii zhurnal 10:1588–1593 (In Russian)

    Google Scholar 

  • Genkal SI, Bondarenko NA, Schur LA (2011) Diatoms in the lakes of the Southern and Northern Eastern Siberia. Rybinsky Dom Pechati, Rybinsk (In Russian)

    Google Scholar 

  • Gesierich D, Rott E (2012) Is diatom richness responding to catchment glaciation? A case study from Canadian headwater streams. J Limnol 71(1):72–83

    Article  Google Scholar 

  • Gleser SI, Makarova IV, Moisseeva AI, Nikolaev VA (eds) (1992) The diatoms of the USSR (fossil and recent). II (2). Nauka, S-Peterburg (In Russian)

    Google Scholar 

  • Grachev MA, Likhoshwai EV, Vorobiova SS, Khlystov OM, Bezrukova EV, Veinberg EV et al (1997) Signals of the paleoclimates of upper Pleistocene in the sediments of Lake Baikal. Russian Geol Geophys 35:994–1018 (In Russian)

    Google Scholar 

  • Hecker C, Meijde M, Meer FD (2010) Thermal infrared spectroscopy on feldspars—successes, limitations and their implications for remote sensing. Earth-Sci Rev 103:60–70

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001) Climate change 2001: the scientific basis. Contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) IPCC fourth assessment report: climate change 2007. Synthesis report (AR4). IPCC, Geneva

    Google Scholar 

  • Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM, Luterbacher J, Wahl E, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Küttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49

    Article  Google Scholar 

  • Karabanov EB, Bezrukova EV, Granina LZ et al (1992) Climatic sedimentation rhythms of Baikal sediments. IPPCCE Newslett 6:21–30

    Google Scholar 

  • Kelly MG, King L, Jones RI, Barker PA (2008) Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia 610:125–129

    Article  Google Scholar 

  • Liu X, Colman SM, Brown ET, Minor EC, Li H (2013) Estimation of carbonate, total organic carbon, and biogenic silica content by FTIR and XRF techniques in sediments lacustrine. J Paleolimnol 50:387–398

    Article  Google Scholar 

  • Marchetto A (1998) The study of high mountain lakes in the activity of the Istituto Italiano di Hidrobiologia. J Limnol 57:1–10

    Google Scholar 

  • Matveev AN, Samusenok VP, Rozhkova NA, Bondarenko NA, Kravtsova LS, Sheveleva NG et al (2006) Biota of Vitim state naturel reserve: structure of biota in aquatic ecosystems. Geo, Novosibirsk (In Russian)

    Google Scholar 

  • Meng Y, Liu G (2013) Stable isotopic information for hydrological investigation in Hailuogou watershed on the eastern slope of Mount Gongga, China. Environ Earth Sci 69:29–39

    Article  Google Scholar 

  • Milner AM, Petts GE (1994) Glacial rivers: physical habitat and ecology. Freshwater Biol 32:295–307

    Article  Google Scholar 

  • Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low and high-resolution proxy data. Nature 433:613–617

    Article  Google Scholar 

  • Muri G, Wakeham SG, Rose NL (2006) Records of atmospheric delivery of pyrolysis-derived pollutants in recent mountain lake sediments of the Julian Alps (NW Slovenia). Environ Pollut 139:461–468

    Article  Google Scholar 

  • Novikova ZS, Grinberg AM (1972) Kodar Khrebet (basins of River Chary and River Vitim). Katalog Lednikov SSSR. Catalogue of Glaciers of the USSR: Lena-Indigirka Basin, 17(2). Gidrometeoizdat, Leningrad (In Russian)

  • Osborn TJ, Briffa KR (2006) The spatial extent of 20th century warmth in the context of the past 1200 years. Science 311:841–844

    Article  Google Scholar 

  • Osipov EY, Khlystov OM (2010) Glaciers and meltwater flux to Lake Baikal during the Last Glacial Maximum. Palaeogeogr Palaeoclimatol Palaeoecol 294:4–15

    Article  Google Scholar 

  • Osipov EY, Osipova OP (2014) Mountain glaciers of southeast Siberia: current state and changes since the Little Ice Age. Ann Glaciol 55(66):167–176

    Article  Google Scholar 

  • Osipov EY, Osipova OP (2015) Glaciers of the Levaya Sygykta River watershed, Kodar Ridge, southeastern Siberia, Russia: modern morphology, climate conditions and changes over the past decades. TI Glacier in Asia. Environ Earth Sci (this issue). doi:10.1007/s12665-015-4352-4

  • Osipov EY, Grachev MA, Mats VD, Khlystov OM, Breitenbach S (2003) Mountain glaciers of the Pleistocene Last Glacial Maximum in the Northwestern Barguzin Range (Nortern Lake Baikal): paleoglacial reconstruction. Russian Geol Geophys 7:652–663 (In Russian)

    Google Scholar 

  • Plastinin LA, Plusnin VM, Chernyshov NI (1993) Landsccape and sattelite studying of exogenous relief in the Kodar-Udokan Mountains area. Irkutsk University Press, Irkutsk (In Russian)

  • Potapova MG, Charles DF, Ponader KC, Winter DM (2004) Quantifying species indicator values for trophic diatom indices: a comparison of approaches. Hydrobiologia 517:25–41

    Article  Google Scholar 

  • Preobrazhenskiy VS (1960) Kodar Glacial Area (Transbaykalia). IX section of the International Geophysical Year Program (Glaciology). Published by the Academy of Sciences of the USSR, Moscow (In Russian)

  • Round FE, Crawford RM, Mann DG (1990) The Diatoms. Biology and morphology of the genera. Cambrige University Press, Cambrige

    Google Scholar 

  • Ruth P (1977) Ecology of freshwater. Diatoms and diatom communities. In: Werner D (ed) The biology of diatoms. Blackwell Scientific, London, pp 284–332

    Google Scholar 

  • Saros JE, Rose KC, Clow DW, Stephens VC, Nurse AB, Arnett HA, Stone JR, Williamson CE, Wolfe AP (2010) Melting Alpine glaciers enrich high-elevation lakes with reactive nitrogen. Environ Sci Technol 44:4891–4896

    Article  Google Scholar 

  • Sayer CD, Davidson TA, Jones JI, Langdon PG (2010) Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshw Biol 55(3):487–499

    Article  Google Scholar 

  • Smol JP (2002) Pollution of lakes and rivers: a paleoenvironmental perspective. Arnold, London

    Google Scholar 

  • Sommaruga R, Kandolf G (2014) Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates. Sci Rep 4:4113. doi:10.1038/srep04113

    Article  Google Scholar 

  • Stepanova OG, Trunova VA, Zvereva VV, Melgunov MS, Fedotov AP (2015) Reconstruction of glacier fluctuations in the East Sayan, Baykalsky and Kodar Ridges (East Siberia, Russia) during the last 210 years based on high-resolution geochemical proxies from proglacial lake bottom sediments. TI Glacier in Asia. Environ Earth Sci (this issue). doi:10.1007/s12665-015-4457-9

  • Stokes CR, Shahgedanova M, Evans IS, Popovnin VV (2013) Accelerated loss of alpine glaciers in the Kodar Mountains, south-eastern Siberia. Global Planet Chang 101:82–96

    Article  Google Scholar 

  • Stolpovskaya VN, Soloncina EP, Zdanova AN (2006) Quantitative IR spectroscopic analysis of non-clay minerals from the bottom sediments of Lakes Baikal and Hovsgöl. Russian Geol Geophys 6:778–888

    Google Scholar 

  • Talib A, Abu Hasan Y, Recknagel F, v. der Molen D (2007) Patternising the alternate stable states of turbid versus clear-water dynamics by applying Kohonen artificial neural network. In: Oxley L and Kulasiri D (eds) MODSIM 2007 international congress on modelling and simulation, Modelling and Simulation Society of Australia and New Zealand, pp 74–80

  • Tolotti M (2001) Phytoplankton and littoral epilithic diatoms in high mountain lakes of the Adamello-Brenta Regional Park (Trentino, Italy) and their relation to trophic status and acidification risk. J Limnol 60(2):171–188

    Article  Google Scholar 

  • Weilhoefer CL, Pan Y (2007) Relationships between diatoms and environmental variables in wetlands in the Willamette Valley, Oregon, USA. Wetlands 27(3):668–682

    Article  Google Scholar 

  • Wetzel RG, Likens GE (1991) Limnological analyses. Springer-Verlag, New York

    Book  Google Scholar 

  • Wille A, Sonntag B, Sattler B, Psenner R (1999) Abundance, biomass and size structure of the microbial assemblage in the high mountain lake Gossenköllesee (Tyrol, Austria) during the ice-free period. J Limnol 58(2):117–126

    Article  Google Scholar 

  • Zabelina MM, Kiselyev IA, Proshkina-Lavrenko AI, Shesukova VS (eds) (1951) Freshwater diatoms of the USSR, vol 4. Soviet Nauka, Moscow (In Russian)

    Google Scholar 

  • Zhu G, Pu T, He Y, Shi P, Zhang T (2013) Seasonal variations of major ions in fresh snow at Baishui Glacier No. 1, Yulong Mountain, China. Environ Earth Sci 69:1–10

    Article  Google Scholar 

  • Zhuchenko NA, Chebykin EP, Stepanova OG, Chebykin AP, Goldberg EL (2008) Microwave digestion of bottom sediments from Lake Baikal for the inductively coupled plasma mass-spectrometric determination of their elemental composition. J Anal Chem 63:943–949

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Enushchenko I. V. (LIN SB RAS)., Isaev V. A., Rogov M. A. and Nikishin C. V. (SNR «Vitimsky») who took part in the coring campaign at Lake Oron in 2013. This study was supported by the Program of the FANO No. VIII.76.1.6, IP SB RAS No, 50, RFBR-13-05-0022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Vorobyeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobyeva, S.S., Trunova, V.A., Stepanova, O.G. et al. Impact of glacier changes on ecosystem of proglacial lakes in high mountain regions of East Siberia (Russia). Environ Earth Sci 74, 2055–2063 (2015). https://doi.org/10.1007/s12665-015-4164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4164-6

Keywords

Navigation