Skip to main content

Advertisement

Log in

A 850-year record climate and vegetation changes in East Siberia (Russia), inferred from geochemical and biological proxies of lake sediments

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

East Siberia is very sensitive to moisture regimes because it is located in a margin area, where moisture from the North Atlantic is strongly depleted, and the penetration of the East Asian monsoon is weak and rare. In winter months, the Siberian anticyclone strongly blocks and reduces the external influences on the region. The high latitude of the study area at 52°N is probably sensitive to variation in insolation and solar activity. We analysed a 42-cm-long sediment record from Lake Mountain located in East Siberia (Russia) for geochemical, mineralogical, subfossil diatoms, chironomids, and pollen to provide a reconstruction of the climate history of the area for the last 850 years. According to our reconstruction, a clear decrease in summer temperatures occurred in East Siberia after ca. 1400 and we linked this temperature drop with the beginning of the Little Ice Age. The coldest summer occurred about ca. 1570–1700 and 1830–1900. We assumed that the most significant changes of the lake bio-productivity and the catchment area were occurred about ca. 1160–1350, 1350–1590, 1590–1730, 1730–1900 and 1940 to the present. The most dramatic period with unfavorable climate conditions for lake-biota was during 1590–1730.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agafonov L, Strunk H, Nuber T (2004) Thermokarst dynamics in Western Siberia: insights from dendrochronological research. Palaeogeogr Palaeoclimatol Palaeoecol 209:183–196

    Google Scholar 

  • An Z (2000) The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev 19:171–187

    Google Scholar 

  • Anderson P, Andrews J, Bradley RS, Brubaker L, Edwards M, Finney B, Grootes P, Lozhkin A, Macdonald G, Miller G, Overpeck J, Smol J, Velichko A, Williams K (1993) Research protocols for PALE. Paleoclimates of Arctic Lakes and Estuaries. Page Core Project Office, Bern

    Google Scholar 

  • Anderson DM, Overpeck JT, Gupta AK (2002) Increase in the Asian southwest monsoon during the past four centuries. Science 297:596–599

    Google Scholar 

  • Anderson NJ, Foy RH, Engstrom DR, Rippey B, Alamgir F (2012) Climate forcing of diatom productivity in a lowland, eutrophic lake: white Lough revisited. Freshw Biol 57:2030–2043

    Google Scholar 

  • Barley EM, Walker IR, Kurek J, Cwynar LC, Mathewes RW, Gajewski K, Finney B (2006) A northwest North America training set: distribution of freshwater midges in relation to air temperature and lake depth. J Paleolimnol 36:295–314

    Google Scholar 

  • Battarbee RW, Bennion H (2012) Using palaeolimnological and limnological data to reconstruct the recent history of European lake ecosystems: introduction. Freshw Biol 57:1979–1985

    Google Scholar 

  • Battarbee RW, Mackay AW, Jewson DH, Ryves DB, Sturm M (2005) Differential dissolution of Lake Baikal diatoms: correction factors and implications for palaeoclimatic reconstruction. Glob Planet Chang 46:75–86

    Google Scholar 

  • BDP Members (Baikal Drilling Project Group) (2000) Late Cenozoic paleoclimate record in bottom sediments of Lake Baikal. Russ Geol Geophys 41:1–29

    Google Scholar 

  • BDP-99 Baikal Drilling Project Members (2005) A new quaternary record of regional tectonic, sedimentation and paleoclimate changes from drill core BDP-99 at Posolskaya Bank, Lake Baikal. Quart Inter 136:105–121

    Google Scholar 

  • Bezrukova EV, Krivonogov SK, Abzaeva AA, Vershinin KE, Letunova PP, Orlova LA, Takahara H, Miyoshi N, Nakamura T, Krapivina SM, Kawamuro K (2005) Landscapes and climate of the Baikal region in the Late Glacial and Holocene (from results of complex studies of peat bogs). Russ Geol Geophys 46:21–33

    Google Scholar 

  • Bezrukova EV, Belov AV, Abzaeva AA, Letunova PP, Orlova LA, Sokolova LP, Kalugina NV, Fisher EE (2006) First high-resolution dated records of vegetation and climate changes on the Lake Baikal northern shore in the middle-late Holocene. Dokl Earth Sci 411:1331–1335

    Google Scholar 

  • Bezrukova EV, Hildebrandt S, Letunova PP, Ivanov EV, Orlova LA, Müller S, Tarasov PE (2013) Vegetation dynamics around Lake Baikal since the middle Holocene reconstructed from the pollen and botanical composition analyses of peat sediments: implications for paleoclimatic and archeological research. Quart Int 290–291:35–45

    Google Scholar 

  • Bibi MH, Ahmed F, Ishiga H, Asaeda T, Fujino T (2010) Present environment of Dam Lake Sambe, southwestern Japan: a geochemical study of bottom sediments. Environ Earth Sci 60:655–670

    Google Scholar 

  • Binford MW (1990) Calculation and uncertainty analysis of 210Pb dates for PIRLA project cores. J Paleolimnol 3:253–267

    Google Scholar 

  • Boës X, Piotrowska N, Fagel N (2005) High-resolution diatom/clay record in Lake Baikal from grey scale, and magnetic susceptibility over Holocene and termination I. Glob Planet Chang 46:299–313

    Google Scholar 

  • Bondarenko NA, Sheveleva NG, Domysheva VM (2002) Structure of plankton communities in Ilchir, an alpine lake in estern Siberia. Limnology 3:127–133

    Google Scholar 

  • Brooks SJ (2006) Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quat Sci Rev 25:1894–1910

    Google Scholar 

  • Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from Late glacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1723–1741

    Google Scholar 

  • Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880

    Google Scholar 

  • Chester R, Elderfield H (1968) The infrared determination of opal in siliceous deep-sea sediments. Geochim Cosmochim Acta 32:1128–1140

    Google Scholar 

  • Chester R, Green RN (1968) The infra-red determination of quartz in sediments and sedimentary rocks. Chem Geol 3:199–212

    Google Scholar 

  • Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press, New York

    Google Scholar 

  • Cohen J, Saito K, Entekhabi D (2001) The role of the Siberian high in Northern Hemisphere climate variability. Geophys Res Let 28:299–302

    Google Scholar 

  • Cremer H, Wagner B (2003) The diatom flora in the ultra-oligotrophic Lake El’gygytgyn, Chukotka. Polar Biol 26:105–114

    Google Scholar 

  • D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res. doi:10.1029/2005JD006352

    Google Scholar 

  • Demske D, Heumann G, Granoszewski W, Nita M, Mamakowa K, Tarasov PE, Oberhänsli H (2005) Late glacial and Holocene vegetation and regional climate variability evidenced in high-resolution pollen records from Lake Baikal. Glob Planet Change 46:255–279

    Google Scholar 

  • Dermott RM, Kalff J, Leggett WC, Spence J (1977) Production of Chironomus, Procladius, and Chaoborus at different levels of Phytoplankton Biomass in Lake Memphremagog, Quebec–Vermont. J Fish Res Board Can. doi:10.1139/f77-268

  • Ding YH (1990) Buildup, air-mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteorol Atmos Phys. doi:10.1029/2003RG000143

    Google Scholar 

  • Dzyuba OF (2005) Atlas of pollen grains. Nikomed, Moscow (in Russian)

    Google Scholar 

  • Eggermont H, Heiri O (2012) The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biol Rev 87:430–456

    Google Scholar 

  • Eichler A, Olivier S, Henderson K, Laube A, Beer J, Papina T, Gäggeler HW, Schwikowski M (2009) Temperature response in the Altai region lags solar forcing. Geophys Res Lett. doi:10.1029/2008GL035930

    Google Scholar 

  • Eichler A, Tinner W, Brütsch S, Olivier S, Papina T, Schwikowski M (2011) An ice-core based history of Siberian forest fires since AD 1250. Quat Sci Rev 30:1027–1034

    Google Scholar 

  • Ensom TP, Burn CR, Kokelj SV (2010) Spatial variation in the thermal regime of Mackenzie Delta lakes and channels. In: 6th Canadian Permafrost Conference. Canadian Geotechnical Society, Calgary, pp 1488–1493

  • Erbaeva EA, Safronov GP (2009) Diptera, Chironomindae in Angara River and its reservoirs. In: Timoshkin OA (ed) Index of animal species inhabiting Lake Baikal and its catchment area, vol II. Nauka, Novosibirsk, pp 348–396 (in Russian)

    Google Scholar 

  • Fedotov AP, Vorobyeva SS, Vershinin KE, Nurgaliev DK, Enushchenko IV, Krapivina SM, Tarakanova KV, Ziborova GA, Yassonov PG, Borissov AS (2012a) Climate changes in East Siberia (Russia) in the Holocene based on diatom, chironomid and pollen records from the sed-iments of Lake Kotokel. J Paleolimnol 47:617–630

    Google Scholar 

  • Fedotov AP, Phedorin MA, Enushchenko IV, Vershinin KE, Melgunov MS, Khodzher TV (2012b) A reconstruction of the thawing of the permafrost during the last 170 years on the Taimyr Peninsula (East Siberia, Russia). Glob Planet Chang 98–99:139–152

    Google Scholar 

  • Fedotov AP, Phedorin MA, Enushchenko IV, Vershinin KE, Krapivina SM, Vologina EG, Petrovskii SK, Melgunov MS, Sklyarova OA (2013) Drastic desalination of small lakes in East Siberia (Russia) in the early twentieth century: inferred from sedimentological, geochemical and palynological composition of small lakes. Environ Earth Sci 68:1733–1744

    Google Scholar 

  • Flower RJ, Ozornina SP, Kuzmina A, Round FE (1998) Pliocaenicus taxa in modern and fossil material mainly from eastern Russia. Diatom Res 13:39–62

    Google Scholar 

  • Ge Q, Hao Z, Zheng J, Shao X (2013) Temperature changes over the past 2000 yr in China and comparison with the Northern Hemisphere. Clim Past 9:1153–1160

    Google Scholar 

  • Genkal SI, Bondarenko NA, Schur LA (2011) Diatoms in the lakes of the Southern and Northern Eastern Siberia. Rybinsky Dom Pechati, Rybinsk (in Russian)

    Google Scholar 

  • Gibson CE, Anderson NJ, Haworth EY (2003) Aulacoseira subarctica: taxonomy, physiology, ecology and palaeoecology. Eur J Phycol 38:83–101

    Google Scholar 

  • Goldberg EL, Grachev MA, Chebykin EP, Phedorin MA, Kalugin IA, Khlystov OM, Zolotarev KV (2005) Scanning SRXF analysis and isotopes of uranium series from bottom sediments of Siberian lakes for high-resolution climate reconstructions. Nucl Instrum Methods A 543:250–254

    Google Scholar 

  • Gong DY, Ho CH (2003) Arctic oscillation signals in the East Asian summer monsoon. J Geophys Res Atmos. doi:10.1029/2002JD002193

    Google Scholar 

  • Gottschalk S (2011) EU reference conditions in Swedish lakes identified with diatoms as palaeoindicators—a review. Boreal Environ Res 16:473–494

    Google Scholar 

  • Grachev MA, Likhoshwai EV, Vorobiova SS, Khlystov OM, Bezrukova EV, Veinberg EV, Goldberg EL, Granina LZ, Kornakova EG, Lazo FI, Levina OV, Letunova PP, Otinov PV, Pirog VV, Fedotov AP, Yaskevich SA, Bobrov VA, Sukhorukov FV, Rezchikov VI, Fedorin MA, Zolotarev KV, Kravchinsky VA (1997) Signals of the paleoclimates of upper Pleistocene in the sediments of Lake Baikal. Russ Geol Geophys 35:994–1018 (in Russian)

    Google Scholar 

  • Gunten L, Heiri O, Bigler C, Leeuwen J, Casty C, Lotter AF, Sturm M (2008) Seasonal temperatures for the past ~400 years reconstructed from diatom and chironomid assemblages in a high-altitude lake (Lej da la Tscheppa, Switzerland). J Paleolimnol 39:283–299

    Google Scholar 

  • Gurbuz H, Kivrak E, Soyupak S, Yerli SV (2003) Predicting dominant phytoplankton quantities in a reservoir by using neural networks. Hydrobiologia 504:133–141

    Google Scholar 

  • Haberhauer G, Rafferty B, Strebl F, Gerzabek MH (1998) Comparison of the composition of forest soil litter derived from three derived sites at various decompositional stages using FTIR-spectroscopy. Geoderma 83:331–342

    Google Scholar 

  • Hall IR, Bianchi GG, Evans JR (2004) Centennial to millennial scale Holocene climate-deep water linkage in the North Atlantic. Quat Sci Rev 23:1529–1536

    Google Scholar 

  • Hecker C, Meijde M, Meer FD (2010) Thermal infrared spectroscopy on feldspars—Successes, limitations and their implications for remote sensing. Earth Sci Rev 103:60–70

    Google Scholar 

  • Heiri O, Lotter AF, Hausman S, Kienast F (2003) A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13:477–484

    Google Scholar 

  • Helama S, Timonen M, Holopainen J, Ogurtsov MG, Mielikäinen K, Eronen M, Lindholm M, Meriläinen J (2009) Summer temperature variations in Lapland during the Medieval Warm Period and the Little Ice Age relative to natural instability of thermohaline circulation on multi-decadal and multi-centennial scales. J Quat Sci 24:450–456

    Google Scholar 

  • Horn H, Paul L, Horn W, Petzoldt T (2011) Long-term trends in the diatom composition of the spring bloom of a German reservoir: is Aulacoseira subarctica favoured by warm winters? Freshw Biol 56:2483–2499

    Google Scholar 

  • Hou D, He J, Lü C, Dong S, Wang J, Xie Z, Zhang F (2014) Spatial variations and distributions of phosphorus and nitrogen in bottom sediments from a typical north-temperate lake, China. Environ Earth Sci 71:3063–3079

    Google Scholar 

  • Huang S (2004) Merging information from different resources for new insights into climate change in the past and future. Geophys Res Lett. doi:10.1029/2004GL019781

    Google Scholar 

  • Jewson DH, Granin NG, Zhdanov AA, Gnatovsky RYu (2009) Effect of snow depth on under-ice irradiance and growth of Aulacoseira baicalensis in Lake Baikal. Aquat Ecol 43:673–679

    Google Scholar 

  • Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys. doi:10.1029/2003RG000143

    Google Scholar 

  • Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM, Luterbacher J, Wahl E, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Küttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49

    Google Scholar 

  • Juggins S (2007) C2 version 1.5 user guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne, UK

  • Juggins S (2012) Rioja: analysis of quaternary science Data, R package version (0.8-5). (http://cran.r-project.org/package=rioja)

  • Kalmychkov GV, Kuz’min MI, Pokrovskii BG, Kostrova SS (2007) Oxygen isotopic composition in diatom algae frustules from Lake Baikal sediments: annual mean temperature variations during the last 40 Ka. Dokl Earth Sci 413:206–209

    Google Scholar 

  • Kalugin IA, Daryin AV, Babich VV (2009) Reconstruction of annual air temperatures for three thousand years in Altai region by lithological and geochemical indicators in Teletskoe lake sediments. Dokl Earth Sci 426:681–684

    Google Scholar 

  • Kalugin IA, Darin AV, Rogozin D, Tretyakov G (2013) Seasonal and centennial cycles of carbonate mineralisation during the past 2500 years from varved sediment in Lake Shira, South Siberia. Quat Inter 290–291:245–252

    Google Scholar 

  • Kataoka H, Takahara H, Krivonogov SK, Bezrukova EV, Orlova L, Krapivina SM, Miyoshi N, Kawamuro K (2003) Pollen record from the Chivyrkui Bay outcrop on the eastern shore of Lake Baikal since the Late Glacial. In: Kashiwaya K (ed) Long continental records from Lake Baikal. Springer, Tokyo, pp 207–218

    Google Scholar 

  • Khursevich GK, Karabanov EB, Prokopenko AA, Williams DF, Kuz’min MI, Fedenya SA, Gvozdkov AN, Kerber EV (2001) Detailed diatom biostratigraphy of Baikal sediments during the Brunhes Chron and climatic factors of species formation. Russ Geol Geophys 42:97–116

    Google Scholar 

  • Kostrova SS, Meyer H, Chapligin B, Kossler A, Bezrukova EV, Tarasov PE (2013) Holocene oxygen isotope record of diatoms from Lake Kotokel (southern Siberia, Russia) and its palaeoclimatic implications. Quat Inter 290–291:21–34

    Google Scholar 

  • Kuznetsova LP (1978) Transfer of moisture over the territory of the USSR. Nauka, Moscow. (In Russian)

  • Larocque I, Hall RI (2003) Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden. J Paleolimnol 29:475–493

    Google Scholar 

  • Larocque I, Hall RI, Grahn E (2001) Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322

    Google Scholar 

  • Larocque I, Pienitz R, Rolland N (2006) Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Québec, Canada. Can J Fish Aquat Sci 63:1286–1297

    Google Scholar 

  • Larocque I, Grosjean M, Heiri O, Bigler C, Blass A (2009) Comparison between chironomid-inferred July temperatures and meteorological data AD 1850–2001 from varved Lake Silvaplana, Switzerland. J Paleolimnol 41:329–342

    Google Scholar 

  • Linevich AA (1981) Chironomidae of Baikal and Pribaikalye. Nauka, Novosibirsk (in Russian)

    Google Scholar 

  • Liu XD, Cheng ZG, Yan LB, Yin ZY (2009) Elevation dependency of recent and futureminimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob Planet Chang 68(3):164–174

    Google Scholar 

  • Liu X, Colman SM, Brown ET, Minor EC, Li H (2013) Estimation of carbonate, total organic carbon, and biogenic silica content by FTIR and XRF techniques in sediments lacustrine. J Paleolimnol 50:387–398

    Google Scholar 

  • Luoto TP (2013) How cold was the Little Ice Age? A proxy-based reconstruction from Finland applying modern analogues of fossil midge assemblages. Environ Earth Sci 68:1321–1329

    Google Scholar 

  • Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD, Portis D, Gonzalez-Rouco JF, von Storch H, Gyalistras D, Casty C, Wanner H (2001) Extending North Atlantic oscillation reconstructions Back to 1500. Atmos Sci Lett 2:114–124

    Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503

    Google Scholar 

  • Mackay AW, Battarbee RW, Flower RJ, Jewson D, Lees JA, Ryves DB, Sturm M (2000) The deposition and accumulation of endemic planktonic diatoms in the sediments of Lake Baikal and an evaluation of their potential role in climate reconstruction during the Holocene. Terra Nostra 9:34–48

    Google Scholar 

  • Mackay AW, Ryves DB, Battarbee RW, Flower RJ, Jewson D, Rioual P, Sturm M (2005) 1000 years of climate variability in central Asia: assessing the evidence using Lake Baikal diatom assemblages and the application of a diatom-inferred model of snow thickness. Glob Planet Chang 46:281–297

    Google Scholar 

  • Mackay AW, Karabanov EB, Leng MJ, Sloane HJ, Morley DW, Panizzo VN, Khursevich G, Williams D (2008) Reconstructing hydrological variability in Lake Baikal during MIS 11: an application of oxygen isotope analysis of diatom silica. J Quat Sci 23:365–374

    Google Scholar 

  • Mackay AW, Swann GEA, Brewer TS, Leng MJ, Morley DW, Piotrowska N, Rioual P, White D (2011) A reassessment of late glacial e Holocene diatom oxygen isotope record from Lake Baikal using a geochemical mass-balance approach. J Quat Sci 26:627–634

    Google Scholar 

  • Mackay AW, Bezrukova EV, Leng MJ, Meaney M, Nunes A, Piotrowska N, Self A, Shchetnikov A, Shilland E, Tarasov P, Wang L, White D (2012) Aquatic ecosystem responses to Holocene climate change and biome development in boreal central Asia. Quat Sci Rev 41:119–131

    Google Scholar 

  • Mackay AW, Bezrukova EV, Boyle JF, Holmes JA, Panizzo VN, Piotrowska N, Shchetnikov A, Shilland EM, Tarasov P, White D (2013) Multiproxy evidence for abrupt climate change impacts on terrestrial and freshwater ecosystems in the Ol’khon region of Lake Baikal, central Asia. Quat Inter 290–291:46–56

    Google Scholar 

  • Makarchenko EA (1982) Chironomids of the genus Protanypus Kieffer (Diptera, Chironomidae) of USSR Far East. In: Biology of fresh-water insects of Far East. Far East Scientific Center, Vladivostok, pp 124–144 (in Russian)

  • Makarchenko EA (2006) Chironomidae—non-biting midges. In: Sidorenko VS, Kupyanskaya AN, Leley AS (eds) The insects of Russian Far East. Vol. VI. Diptera and Siphonoptera. Pt. 4. Key of the insects of Russian Far East. Dalnauka, Vladivostok, pp 204–734 (in Russian)

  • Makarova IV (ed) (1992) Diatoms of the USSR (modern and fossil). Nauka, St. Petersburg (in Russian)

  • Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the Little Ice Age and medieval climate anomaly. Science 326:1256–1260

    Google Scholar 

  • Marziali L, Rossaro B (2013) Response of chironomid species (Diptera, Chironomidae) to water temperature: effects on species distribution in specific habitats. J Entomol Acarol Res 45e14:73–89

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    Google Scholar 

  • Moiseenko TI, Gashkina NA, Dinu MI, Kremleva TA, Khoroshavin VYu (2013) Aquatic Geochemistry of Small Lakes: effects of environment changes. Geochem Int 51:1031–1148

    Google Scholar 

  • Moldan F, Cosby BJ, Wright RF (2013) Modeling past and future acidification of Swedish Lakes. Ambio 42:577–586

    Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) In: Pollen analysis, 2nd edn. Blackwell Scientific Publications, London

    Google Scholar 

  • Morley DW, Leng MJ, Mackay AW, Sloane HJ, Rioual P, Batterbee RW (2004) Cleaning of lake sediment samples for diatom oxygen isotope analysis. J Paleolimnol 31:391–401

    Google Scholar 

  • Nazarova LB, Pestryakova LA, Ushnitskaya LA, Hubberten H-W (2008) Chironomids (Diptera: Chironomidae) in lakes of Central Yakutia and their indicative potential for paleoclimatic research. Contemp Prob Ecol 1:335–345

    Google Scholar 

  • Nazarova L, Herzschuh U, Wetterich S, Pestryakova L (2011) Chironomid-based inference models for estimating mean July air temperature and water depth from lakes in Yakutia, northeastern Russia. J Paleolymnol 45:57–71

    Google Scholar 

  • Nazarova L, Lüpferta H, Subetto D, Pestryakova L, Diekmann B (2013) Holocene climate conditions in central Yakutia (Eastern Siberia) inferred from sediment composition and fossil chironomids of Lake Temje. Quat Int 290–291:264–274

    Google Scholar 

  • Ndiaye M, Davaud E, Ariztegui D, Fall M (2012) A semi automated method for laminated sediments analysis. Int J Geosci 3:206–210

    Google Scholar 

  • Nesbitt HW (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279:206–210

    Google Scholar 

  • Ogden JG III (1986) An alternative to exotic spore or pollen addition in quantitative microfossil studies. Can J Earth Sci 23:102–106

    Google Scholar 

  • Olander H, Birks HJB, Korhola A, Blom T (1999) An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene 9:279–294

    Google Scholar 

  • Osborn TJ, Briffa KR (2006) The spatial extent of 20th century warmth in the context of the past 1200 years. Science 311:841–844

    Google Scholar 

  • Panagiotopoulos F, Shahgedanova M, Hannachi A, Stephenson DB (2005) Observed trends and teleconnections of the Siberian High: a recently declining center of action. J Clim 18:1411–1422

    Google Scholar 

  • Phedorin MA, Goldberg EL (2005) Prediction of absolute concentrations of elements from SR XRF scan measurements of natural wet sediments. Nucl Instrum Methods Phys Res A 543:274–279

    Google Scholar 

  • Phedorin MA, Bobrov VA, Goldberg EL, Navez J, Zolotaryov KV, Grachev MA (2000a) SR-XFA as a method of choice in the search of signals of changing palaeoclimates in the sediments of Lake Baikal, compared to INAA and ICP-MS. Nucl Instrum Methods Phys Res A 448:394–399

  • Phedorin MA, Goldberg EL, Grachev MA, Levina OL, Khlystov OM, Dolbnya IP (2000b) The comparison of biogenic silica, Br and Nd distributions in the sediments of Lake Baikal as proxies of changing paleoclimates of the last 480 ky. Nucl Instrum Methods Phys Res A 448:400–406

    Google Scholar 

  • Phedorin MA, Fedotov AP, Saeva OP, Bobrov VA (2007) Variations in environmental conditions of intracontinental Asia over the past 1 Ma in high-resolution geochemical records from bottom sediments of Lake Khubsugul (Mongolia). Dokl Earth Sci 417:1416–1420

    Google Scholar 

  • Phedorin MA, Fedotov AP, Vorobieva SS, Ziborova GA (2008) Signature of long supercycles in the Pleistocene history of Asian limnic systems. J Paleolimnol 40:445–452

    Google Scholar 

  • Pokrovsky OS, Schott J, Dupre B (2006) Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in Central Siberia. Geochim Cosmochim Acta 70:3239–3260

    Google Scholar 

  • Rees ABH, Cwynar LC, Cranston PS (2008) Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. J Paleolimnol 40:1159–1178

    Google Scholar 

  • Sayer CD, Davidson TA, Jones JI, Langdon PG (2010) Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshw Biol 55:487–499

    Google Scholar 

  • Schöpp W, Posch M, Mylona S, Johansson M (2003) Longterm development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrol Earth Syst Sci 7:436–446

    Google Scholar 

  • Shichi K, Takahara H, Krivonogov SK, Bezrukova EV, Kashiwaya K, Takehara A, Nakamura T (2009) Late Pleistocene and Holocene vegetation and climate records from Lake Kotokel, central Baikal region. Quat Int 205:98–110

    Google Scholar 

  • Shimaraev MN (2008) Influence of the North Atlantic oscillation on ice-thermal processes in Lake Baikal. Dokl Earth Sci 423A:1418–1422

    Google Scholar 

  • Sklyarov EV, Solotchina EP, Vologina EG, Ignatova NV, Izokh OP, Kulagina NV, Sklyarova OA, Solotchin PA, Stolpovskaya VN, Ukhova NN, Fedorovskii VS, Khlystov OM (2010) Detailed Holocene climate record from the carbonate section of saline Lake Tsagan-Tyrm (West Baikal area). Russ Geol Geophys 51:237–258

    Google Scholar 

  • Smol JP (2002) Pollution of lakes and rivers - A paleoenvironmental perspective. Arnold (Hodder Headline Group), London

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M-A, Hughes M, Keatley B, Laing T, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot É, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Nat Acad Sci USA 102:4397–4402

    Google Scholar 

  • Solovieva N, Jones VJ, Nazarova L, Brooks SJ, Birks HJB, Grytnes J-A, Peter G, Appleby PG, Kauppila T, Kondratenok B, Renberg I, Ponomarev V (2005) Palaeolimnological evidence for recent climatic change in lakes from the northern Urals, arctic Russia. J Paleolimnol 33:463–482

    Google Scholar 

  • Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett. doi:10.1029/2009GL040142

    Google Scholar 

  • Stoermer EF, Smol JP (1999) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Stolpovskaya VN, Soloncina EP, Zdanova AN (2006) Quantitative IR spectroscopic analysis of non-clay minerals from the bottom sediments of Lakes Baikal and Hovsgöl. Russ Geol Geophys 6:778–888

    Google Scholar 

  • Storch H, Zorita E, Jones JM, Dimitriev Y, González-Rouco F, Tett SFB (2004) Reconstructing past climate from noisy data. Science 306:679–682

    Google Scholar 

  • Takahara H, Krivonogov SK, Bezrukova EV, Miyoshi N, Morita Y, Nakamura T, Hase Y, Shinomiya Y, Kawamuro K (2000) Vegetation history of the southeastern and eastern coasts of Lake Baikal from bog sediments since the last interstade. In: Minoura K (ed) Lake Baikal: a mirror in time and space for understanding global change processes. Elsevier, Amsterdam, pp 108–118

    Google Scholar 

  • Tarasov PE, Harrison SP, Saarse L, Pushenko MYa, Andreev AA, Aleshinskaya ZV, Davydova NN, Dorofeyuk NI, Efremov YuV, Khomutova VI, Sevastyanov DV, Tamosaitis J, Uspenskaya ON, Yakushko OF, Tarasova IV (1994) Lake status records from the former Soviet Union and Mongolia: data base documentation, NOAA Paleoclimatology Publications Series Report. 2 Boulder

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Pankratova VYa (1970) Larvae and pupae of non-biting midges of the subfamilies Orthocladiinae (Diptera, Chironomidae = Tendipedidae) of the USSR fauna. Nauka, Leningrad (in Russian)

    Google Scholar 

  • Pankratova VYa (1977) Larvae and pupae of non-biting midges of the subfamilies Podonominae and Tanypodinae (Diptera, Chironomidae = Tendipedidae) of the USSR fauna. Nauka, Leningrad (in Russian)

    Google Scholar 

  • Pankratova VYa (1983) Larvae and pupae of non-biting midges of the subfamilies Chironominae (Diptera, Chironomidae = Tendipedidae) of the USSR fauna. Nauka, Leningrad (in Russian)

    Google Scholar 

  • Walker IR, Cwynar LC (2006) Midges and palaeotemperature reconstruction—the North american experience. Quat Sci Rev 25:1911–1925

    Google Scholar 

  • Wick L, Lemcke G, Sturm M (2003) Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. Holocene 13:665–675

    Google Scholar 

  • Williams JW, Shuman B, Bartlein PJ, Whitmore J, Gajewski K, Sawada M, Minckley T, Shafer S, Viau AE, Webb T, Anderson PM III, Brubaker LB, Whitlock C, Davis OK (2006) An atlas of pollen-vegetation-climate relationships for the United States and Canada. American Association of Stratigraphic Palynologists Foundation, Dallas

    Google Scholar 

  • Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett. doi:10.1029/2005GL023424

    Google Scholar 

  • Yang B, Braeuning A, Johnson KR, Yafeng S (2002) General characteristics of temperature variation in China during the last two millennia. Geophys Res Lett. doi:10.1029/2001GL014485

    Google Scholar 

  • Zabelina MM, Kiselyev IA, Proshkina-Lavrenko AI, Shesukova VS (eds) (1951) Freshwater diatoms of the USSR, vol 4. Soviet Nauka, Moscow (in Russian)

    Google Scholar 

  • Zhu ZJ, Chen JA, Li DH, Ren SC, Liu F (2012) Li/Ca ratios of ostracod shells at Lake Qinghai, NE Tibetan Plateau, China: a potential temperature indicator. Environ Earth Sci 67:1735–1742

  • Zhu YR, Zhang RY, Wu FC, Qu XX, Xie FZ, Du ZY (2013) Phosphorus fractions and bioavailability in relation to particle size characteristics in sediments from Lake Hongfeng. Southwest China. Environ Earth Sci 68(4):1041–1052

    Google Scholar 

  • Zhuchenko NA, Chebykin EP, Stepanova OG, Chebykin AP, Gol’dberg EL (2008) Microwave digestion of bottom sediments from Lake Baikal for the inductively coupled plasma mass-spectrometric determination of their elemental composition. J Anal Chem 63:943–949

    Google Scholar 

  • Zolotarev KV, Goldberg EL, Kondratyev VI, Kulipanov GN, Miginsky EG, Tsukanov VM, Phedorin MA, Kolmogorov YP (2001) Scanning SR-XRF beamline for analysis of bottom sediments. Nucl Instrum Methods Phys Res A470:376–379

    Google Scholar 

Download references

Acknowledgments

We are grateful to Makarchenko E.A. (Bio-Soil Institute FEB RAS) for their advices and comments in identification of chironomid and help in search of necessary literature. Chebykin E.P. and Vodneva E.N. for help with the ICP-MS data analyses, Vershinin K.E., and Fedotov A.A., who took part in the coring campaign at Lake Mountain in 2010. This study was supported by Program of the FANO No. 10345–2014–0008 (VIII.76.1.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Fedotov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotov, A.P., Trunova, V.A., Enushchenko, I.V. et al. A 850-year record climate and vegetation changes in East Siberia (Russia), inferred from geochemical and biological proxies of lake sediments. Environ Earth Sci 73, 7297–7314 (2015). https://doi.org/10.1007/s12665-014-3906-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3906-1

Keywords

Navigation