Skip to main content

Advertisement

Log in

Niche-based projections of wetlands shifts with marine intrusion from sea level rise: an example analysis for North Carolina

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Climate change is affecting world systems in many ways, of which one important dimension is sea level rise. This implication, however, has not heretofore been incorporated powerfully in analyses of biodiversity consequences of climate change, for lack of effective means of (1) modeling the degree and extent of marine intrusion into terrestrial habitats, and (2) anticipating dispersal-mediated shifts in natural systems (species, ecosystems, etc.). In this paper, recent developments in modeling marine intrusion over complex coastal landscapes are integrated with an adaptation of ecological niche modeling for estimating ‘niches’ of natural systems to anticipate sea level rise effects on them in an appropriate biological framework. This novel series of steps is illustrated with a worked example of wetlands systems and associated species and communities along the coast of North Carolina, but the methodology is novel for anticipating sea level rise-mediated shifts in vegetation types in many coastal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232

    Article  Google Scholar 

  • Arens SM, Slings QL, Geelen LH, Van der Hagen HG (2013) Restoration of dune mobility in the Netherlands. In: Restoration of Coastal Dunes. Springer, pp 107–124

  • Bedford BL (1996) The need to define hydrologic equivalence at the landscape scale for freshwater wetland mitigation. Ecol Appl 6:57–68. doi:10.2307/2269552

    Article  Google Scholar 

  • Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S, Guo H, Machmuller M (2009) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ 7:73–78. doi:10.1890/070219

    Article  Google Scholar 

  • Day JW, Boesch DF, Clairain EJ, Kemp GP, Laska SB, Mitsch WJ, Orth K, Mashriqui H, Reed DJ, Shabman L, Simenstad CA, Streever BJ, Twilley RR, Watson CC, Wells JT, Whigham DF (2007) Restoration of the Mississippi Delta: lessons from hurricanes Katrina and Rita. Science 315:1679–1684. doi:10.1126/science.1137030

    Article  Google Scholar 

  • Elith J, Graham C, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loisell BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire E, Soberón J, Williams S, Wisz MS, Zimmerman NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Gehrels R, Long A (2008) Sea level is not level: the case for a new approach to predicting UK sea-level rise. Geography 93:11–16

    Google Scholar 

  • Grinsted A, Moore J, Jevrejeva S (2010) Reconstructing sea level from paleo and projected temperatures 200 to 2,100. Clim Dyn 34:461–472. doi:10.1007/s00382-008-0507-2

    Article  Google Scholar 

  • Hopkinson CS, Lugo AE, Alber M, Covich AP, Van Bloem SJ (2008) Forecasting effects of sea-level rise and windstorms on coastal and inland ecosystems. Front Ecol Environ 6:255–263. doi:10.1890/070153

    Article  Google Scholar 

  • Horton R, Herweijer C, Rosenzweig C, Liu J, Gornitz V, Ruane AC (2008) Sea level rise projections for current generation CGCMs based on the semi-empirical method. Geophys Res Lett 35:L02715. doi:10.1029/2007gl032486

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Islam MZ-u, Menon S, Li X, Peterson AT (2013) Forecasting ecological impacts of sea-level rise on coastal conservation areas in India. J Threat Taxa 5(9):4349–4358. doi:10.11609/JoTT.o3163.4349-58

  • Jevrejeva S, Moore JC, Grinsted A (2010) How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys Res Lett 37:L07703

    Article  Google Scholar 

  • Kirwan M, Temmerman S (2009) Coastal marsh response to historical and future sea-level acceleration. Quat Sci Rev 28:1801–1808

    Article  Google Scholar 

  • Lee JK, Park RA, Mausel PW (1992) Application of geoprocessing and simulation modeling to estimate impacts of sea level rise on the northeast coast of Florida. Photogramm Eng Remote Sens 58:1579–1586

    Google Scholar 

  • Legra L, Li X, Peterson AT (2008) Biodiversity consequences of sea level rise in New Guinea. Pacif Conserv Biol 13:191–199

    Google Scholar 

  • Li X, Rowley RJ, Kostelnick JC, Braaten D, Meisel J, Hulbutta K (2009) GIS analysis of global inundation impacts from sea level rise. Photogramm Eng Remote Sens 75:807–818

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151. doi:10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  • Lovejoy TE, Hannah L (eds) (2005) Climate change and biodiversity. Yale University Press, New Haven

    Google Scholar 

  • McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16(5):545–556. doi:10.1111/j.1466-8238.2007.00317.x

    Article  Google Scholar 

  • Menon S, Z-u Islam, Peterson AT (2009) Projected climate change effects on nuthatch distribution and diversity across Asia. Raffles Bull Zool 57:569–575

    Google Scholar 

  • Menon S, Soberón J, Li X, Peterson AT (2010) Preliminary global assessment of terrestrial biodiversity consequences of sea level rise mediated by climate change. Biodivers Conserv 19:1599–1609

    Article  Google Scholar 

  • Mitrovica JX, Gomez N, Clark PU (2009) The sea-level fingerprint of west Antarctic collapse. Science 323:753. doi:10.1126/science.1166510

    Article  Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877

    Article  Google Scholar 

  • NCCRC (2010) North Carolina sea-level rise assessment report. Science Panel on Coastal Hazards. North Carolina Coastal Resources Commission, Raleigh

    Google Scholar 

  • Neubauer SC (2013) Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology. Estuaries Coasts 36:491–507

    Article  Google Scholar 

  • Pardaens A, Gregory J, Lowe J (2011) A model study of factors influencing projected changes in regional sea level over the twenty-first century. Clim Dyn 36:2015–2033. doi:10.1007/s00382-009-0738-x

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Peterson AT, Papeş M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550–560

    Article  Google Scholar 

  • Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecol Model 213:63–72

    Article  Google Scholar 

  • Peterson AT, Li X, Navarro-Sigüenza AG (2010) Joint effects of marine intrusion and climate change on the Mexican avifauna. Ann Assoc Am Geogr 100:908–916

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton

    Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 21:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level-rise. Science 315:368–370

    Article  Google Scholar 

  • Randin CF, Dirnbock T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33(10):1689–1703. doi:10.1111/j.1365-2699.2006.01466.x

    Article  Google Scholar 

  • Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland ice sheet. Science 311:986–990. doi:10.1126/science.1121381

    Article  Google Scholar 

  • Stockwell DRB, Peters DP (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci 13:143–158

    Article  Google Scholar 

  • Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuna C, Akins T, Brecher H, Frederick E, Gogineni P, Krabill W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated sea-level rise from West Antarctica. Science 306:255–258. doi:10.1126/science.1099650

    Article  Google Scholar 

  • USFWS (2012) Endangered and Threatened Species of North Carolina; http://www.fws.gov/raleigh/es_tes.html. U.S. Fish and Wildlife Service, Raleigh Ecological Services Field Office, Raleigh

  • Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106:21527–21532

    Article  Google Scholar 

  • Virah-Sawmy M, Willis KJ, Gillson L (2009) Threshold response of Madagascar’s littoral forest to sea-level rise. Glob Ecol Biogeogr 18:98–110

    Article  Google Scholar 

  • Warren RS, Niering WA (1993) Vegetation change on a northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology 74:96–103

    Article  Google Scholar 

  • Webb EL, Friess DA, Krauss KW, Cahoon DR, Guntenspergen GR, Phelps J (2013) A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nat Clim Chang 3:458–465

    Article  Google Scholar 

Download references

Acknowledgments

Keith French and Chris Dobbs prepared the datasets for analysis. This research was supported by a Grant (DE-FC02-06ER64298) from the US Department of Energy through the National Institute for Climatic Change Research—Coastal Center at Tulane University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Townsend Peterson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterson, A.T., Li, X. Niche-based projections of wetlands shifts with marine intrusion from sea level rise: an example analysis for North Carolina. Environ Earth Sci 73, 1479–1490 (2015). https://doi.org/10.1007/s12665-014-3498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3498-9

Keywords

Navigation