Skip to main content
Log in

Geochemical processes controlling the groundwater transport of contaminants released by a dump in an arid region of México

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Vado Carranza dump, located in the Mexicali Valley, Baja California, northwest Mexico, was operated for more than 15 years receiving about 30 tons/day of solid wastes. The disposed wastes were periodically burned in open air. The presence of a shallow aquifer in the area makes the groundwater vulnerable to contamination processes. The purpose of this study was the evaluation of heavy metals content (Cu, Cd, Ni, Pb and Zn) in soil and groundwater in the vicinity of this dump. The results indicate high content of metals in soil, mainly at a superficial level, with the highest concentrations in the areas where burning of wastes occurred. Elevated concentrations of cadmium and copper were detected in groundwater with the highest concentrations occurring in monitoring wells located in the north side of the dump, downward of groundwater flow. Although the high content of metals in soil can be attributed to the burning of waste, other sources of pollution could be the agricultural irrigation in the vicinity of the dump. The program PHREEQC was used to model the geochemical evolution of groundwater. Results suggest that evaporation of the contaminated waters circulating below the landfill is one of the key processes that explain the increased concentration of contaminants in groundwater and its seasonal variations. As groundwater flows away from the dump, evaporation can concentrate the chemicals making the water more toxic. These results are important because they illustrate processes that are likely to occur in landfills located in other desert areas of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aiuppa A, Federico C, Allard P, Gurrieri S, Valenza M (2005) Trace metal modeling groundwater–gas–rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italy. Chem Geol 216:289–311

    Article  Google Scholar 

  • Alloway BJ (1990) Heavy metals in soils. Wiley, New York

    Google Scholar 

  • Al-Yaqout AF, Hamoda MF (2003) Evaluation of landfill leachate in arid climate—a case study. Environ Int 29(5):593–600

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution. A.A. Balkema, Leiden

    Book  Google Scholar 

  • Brun A, Engesgaard P, Christensen TH, Rosbjerg D (2002) Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill, Denmark. J Hydrol 256(3–4):228–247

    Article  Google Scholar 

  • Diario Oficial de la Federación/The Official Gazette of the Federation (DOF) (2006) Norma Mexicana NMX-AA-132-SCFI-2006. Muestreo de suelos para la identificación y la cuantificación de metales y metaloides, y manejo de la muestra/Mexican Norm NMX-AA-132-SCFI-2006. Soil sampling for metal and semimetal identification and quantification, and sample handling. http://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/agenda/PPD02/NMX132AA2006.pdf. Accessed 22 January 2013

  • Fetter CW (1993) Contaminant hydrogeology. Macmillan, New York

    Google Scholar 

  • Instituto Nacional de Estadística, Geografía e Informática/National Institute of Statistical, Geography and Informatics (INEGI) (2001) Síntesis de información geográfica del estado de Baja California/Synthesis of geographic information of the Baja California state. INEGI, Mexico

    Google Scholar 

  • Instituto Nacional de Estadística, Geografía e Informática/National Institute of Statistical, Geography and Informatics (INEGI) (2005) Anuario estadístico de México/Statistical yearbook of Mexico. INEGI, Mexico

    Google Scholar 

  • Israde I, Buenrostro O, Carrillo-Chávez A (2005) Geological characterization and environmental implications of the placement of the Morelia Landfill, Michoacán, Central Mexico. J Air Waste Manag Assoc 55(6):755–764

    Google Scholar 

  • Kale SS, Kadam AK, Kumar S, Pawar NJ (2010) Evaluating pollution potential of leachate from landfill site from the Pune metropolitan city and its impact on shallow basaltic aquifers. Environ Monit Assess 162(1–4):327–346. doi:10.1007/s10661-009-0799-7

    Article  Google Scholar 

  • Kookana RS, Naidu R, Barry DA, Tran TY, Bajracharya K (1999) Sorption–desorption equilibria and dynamics of cadmium during transport in soil. In: Magdi Selim H, Iskandar K (ed) Fate and transport of heavy metals in the vadose zone, 1st edn. CRC Press LLC, Boca Raton, pp 107–123

  • Kumar CP (2012) Groundwater modelling software—capabilities and limitations. J Environ Sci Toxicol Food Technol 1(2):46–57

    Article  Google Scholar 

  • Merkel BJ, Planer-Friedrich B (2008) Groundwater Geochemistry: a practical guide to modeling of natural and contaminated aquatic systems. Springer, Berlin

    Google Scholar 

  • Mor S, Ravindra K, Dahiya RP, Chandra A (2006) Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ Monit Assess 118:435–456. doi:10.1007/s10661-006-1505-7

    Article  Google Scholar 

  • Morf L, Brunner P, Spaun S (2000) Effect of operating conditions and input variations on the partitioning of metals in a municipal solid waste incinerator. Waste Manag Res 18(1):4–15. doi:10.1034/j.1399-3070.2000.00085.x

    Google Scholar 

  • Nicolli HB, Bundschuh J, García JW, Falcon CM, Jean JS (2010) Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semiarid dry climates—evidence from the Chaco—Pampean plain (Argentina). Water Res 44(19):5589–5604

    Article  Google Scholar 

  • Oliveira-Filho EC, Matos Lopes R, Roma Paumgartten FJ (2004) Comparative study on the susceptibility of freshwater species to copper-based pesticides. Chemosphere 56(4):369–374

    Article  Google Scholar 

  • Parkhurst DL, Appelo CA (2000) User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Water-Resources Investigations Report 99–4259, p 312

  • Ramírez-Hernández J, Román-Calleros J, Reyes-López JA, Lázaro-Mancilla O (2006) El escenario del agua en el Valle de Mexicali. In: Ramírez-Hernández J (ed) Una visión de la problemática ambiental de Mexicali y su valle, 1st edn. Autonomous University of Baja California (UABC), Mexicali, pp 19–70

    Google Scholar 

  • Sadek S, Ghanimeha S, El-Fadela M (2007) Predicted performance of clay-barrier landfill covers in arid and semi-arid environments. Waste Manag 27(4):572–583

    Article  Google Scholar 

  • Secretaría de Economía (SE) (2001) Norma Mexicana NMX-AA-051-SCFI-2001, Análisis de agua—Determinación de metales por absorción atómica en aguas naturales potables, residuales y residuales tratadas—Método de Prueba/Mexican Norm NMX-AA-051-SCFI-2001, Water analysis—Determination of metals by atomic absorption in natural drinking, wastewaters and wastewaters treated—test method. http://www.conagua.gob.mx/CONAGUA07/Noticias/NMX-AA-051-SCFI-2001.pdf. Accessed 21 August 2012

  • Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer, Heidelberg

    Book  Google Scholar 

  • Tesfay T, Korom S (2006) Modeling groundwater denitrification by ferrous iron using PHREEQC. Technical report. Department of Geology and Geological Engineering, University of North Dakota. http://www.ndsu.edu/wrri/TedrosScottFinal%20Report.pdf. Accessed 22 January 2013

  • Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and water balance. Drexel Institute of Technology, Laboratory of Climatology, Certenton

    Google Scholar 

  • USEPA (1996) Method 3050B—Acid digestion of sediments, sludges and soils samples for analysis by flame atomic absorption (FLAA) or inductively coupled plasma atomic emission spectrometry (ICP-AES). http://www.epa.gov/sam/pdfs/EPA-3050b.pdf. Accessed 21 August 2012

  • Valdez-Carrillo (2010) Impacto de los residuos provenientes de un tiradero a cielo abierto sobre la calidad del agua subterránea. Dissertation, Autonomous University of Baja California, UABC

  • Van Breukelen BM, Griffioen (2004) Biogeochemical processes at the fringe of a landfill leachate pollution plume: plume for dissolved organic carbon, Fe(II), Mn(II), NH4 and CH4 oxidation. J Contam Hydrol 73(1–4):181–205. doi:10.1016/j.jconhyd.2004.01.001

    Article  Google Scholar 

  • Vasanthi P, Kaliappan S, Srinivasaraghavan R (2008) Impact of poor solid waste management on groundwater. Environ Monit Assess 143:227–238. doi:10.1007/s10661-007-9971-0

    Article  Google Scholar 

  • Wan Zuhairi WY (2003) Sorption capacity on lead, copper and zinc by clay soils from South Wales, United Kingdom. Environ Geol 45:236–242. doi:10.1007/s00254-003-0871-5

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank National Council of Science and Technology (CONACYT) for financially supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime A. Reyes-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Puentes, F.J., Reyes-López, J.A., López, D.L. et al. Geochemical processes controlling the groundwater transport of contaminants released by a dump in an arid region of México. Environ Earth Sci 71, 609–621 (2014). https://doi.org/10.1007/s12665-013-2456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2456-2

Keywords

Navigation