Skip to main content
Log in

Analysis of the surface of different marbles by X-ray photoelectron spectroscopy (XPS) to evaluate decay by SO2 attack

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Atmospheric pollution is one of the main agents of decay in monuments and other works of art located in industrialised urban centres. SO2 is a permanent and abundant component of air pollution and, although it does not have an immediate visual effect, after continuous exposure, it can cause irreversible damage to building materials. Marble is one of the most commonly used ornamental stones in historical monuments and its mineralogical composition makes it very susceptible to damage caused by exposure to SO2. To measure the chemical reactions caused on marble by the action of atmosphere rich in SO2, selected calcitic and dolomitic samples were altered by weathering accelerated test. For this, seven marble types (four calcitic and three dolomitic) were exposed to high concentration of sulphur dioxide for 24 h in a climate chamber under controlled temperature and humidity conditions (20 °C and > 90 % HR). Changes on marble surfaces caused by reactions of SO2 with calcite and dolomite were studied using two non-destructive techniques: chromatic change by means of colorimetry and chemical analysis using X-ray photoelectron spectroscopy (XPS). The development of new mineral phases was also observed by scanning electron microscopy. Colorimetric analysis revealed a decrease in lightness and chromatic parameters suggesting that these changes were due to the development of new mineral phases in all marbles. The XPS technique, which is generally used in the analysis of metals, is relatively new in the field of stone deterioration. It enabled us to recognise the development of sulphites and sulphates on marble surfaces with high precision, after just 24 h of exposure to high SO2 concentrations and to distinguish different decay paths for calcitic and dolomitic marbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amoroso GG, Fassina V (1983) Stone decay and conservation. Elsevier, Amsterdam

    Google Scholar 

  • Antill SJ, Viles HA (1999) Aspects of stone weathering, decay and conservation. Imperial College Press, London, pp 28–42

    Google Scholar 

  • Baltrusaitis J, Usher CR, Grassian VH (2007) Reactions of sulfur dioxide on calcium carbonate single crystal and particle surfaces at the adsorbed water carbonate interface. Phys Chem Chem Phys 9:3011–3024

    Article  Google Scholar 

  • Billmeyer FW, Salzmanm M (1981) Principles of color technology, 2nd edn. Wiley, New York

    Google Scholar 

  • Böke H, Göktürk H, Caner-Saltık E, Demirci S (1999) Effect of airborne particle on SO2–calcite reaction. Appl Surf Sci 140:70–82

    Article  Google Scholar 

  • Böke H, Hale-Göktürk EH, Caner-Saltık E (2002) Effect of some surfactants on SO2–marble reaction. Mater Lett 57:935–939

    Article  Google Scholar 

  • Briggs D, Seah MP (1983) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. In: Briggs D, Seah MP (eds) Wiley, Chichester

  • Briggs D, Grant JT (2003) Surface analysis and X-ray photoelectron spectroscopy. IM Publications, Chichester

  • Brimblecombe P (2004) Air pollution and cultural heritage. In: Saiz-Jimenez C (ed) London, pp 87–90

  • Camuffo D (1995) Physical weathering of stones. Sci Total Environ 167(1–3):1–14

    Article  Google Scholar 

  • Christie AB, Sutherland I, Walls JM (1981) An XPS study of ion-induced dissociation on metal carbonate surfaces. Vaccum 31:513–517

    Article  Google Scholar 

  • Christie AB, Lee J, Sutherland I, Walls JM (1983) An XPS study of ion-induced compositional changes with group II and group IV compounds. Appl Surf Sci 15:224–237

    Article  Google Scholar 

  • Coyle GJ, Tsang T, Adler I, Ben-Zvi N (1981) XPS studies of ion-bombardment damage of transition metal sulfates. J Electron Spectrosc Relat Phenom 24:221–236

    Article  Google Scholar 

  • Craig NL, Harker AB, Novakov T (1974) Determination of the chemical states of sulfur in ambient pollution aerosols by X-ray photoelectron spectroscopy. Atmos Environ 8:15–21

    Article  Google Scholar 

  • Cultrone G, Arizzi A, Sebastián E, Rodríguez-Navarro C (2008) Sulfation of calcitic and dolomitic lime mortars in the presence of diesel particulate matter. Environ Geol 56:741–752

    Article  Google Scholar 

  • Elfving P, Panas I, Lindqvist O (1994) Model study of the first steps in deterioration of calcareous stone. Initial surface sulphite formation on calcite. Appl Surf Sci 74:91–98

    Article  Google Scholar 

  • Fassina V (1991) Atmospheric pollutants responsible for stone decay. Wet and dry surface deposition of air pollutants on stone and the formation of black scabs. In: Zezza F (ed) Weathering and air pollution. Community of Mediterranean Universities, Bari, pp 67–86

    Google Scholar 

  • Fassina V, Favaro M, Naccari A (2002) Principal decay patterns on venetian monuments. In: Siegesmund S, Weiss TS, Vollbrecht A (eds) Natural stones, weathering phenomena, conservation strategies and case studies, special publications 205. Geological Society, London, pp 381–391

    Google Scholar 

  • Feddema JJ, Meierding TC (1987) Marble weathering and air pollution in Philadelphia. Atmos Environ 21(1):143–157

    Article  Google Scholar 

  • Gauri KL, Doderer GC, Lipscomb NT, Sarma AC (1973) Reactivity of treated and untreated marble specimens in an SO2 atmosphere. Stud Conserv 18:25–35

    Article  Google Scholar 

  • Gauri KL, Tambe SS, Caner-Saltık EN (1992) Weathering of dolomite in industrial environments. Environ Geol Water Sci 19:55–63

    Article  Google Scholar 

  • Ghobadi MH, Momeni AA (2011) Assessment of granitic degradability susceptive to acid solutions in urban area. Environ Earth Sci 64:753–760

    Article  Google Scholar 

  • González-Elipe AR, Fernández A, Caballero A, Holgado JP, Munuera G (1993) Mixing effects in CeO2/TiO2 and CeO2/SiO2 systems submitted to Ar+ sputtering. J Vac Sci Technol A 11:58–65

    Article  Google Scholar 

  • Hagisawa H (1933) Studies of magnesium sulphite. Bull Inst Phys Chem Res 12:976–983

    Google Scholar 

  • Kellogg WW, Cadle RD, Allen ER, Lazrus AL, Martell EA (1972) The sulfur cycle. Science 175(22):587–596

    Article  Google Scholar 

  • Kelly R (1989) Bombardment-induced compositional change with alloys, oxides, oxysalts and halides III. The role of chemical driving forces. Mater Sci Eng 115:11–24

    Article  Google Scholar 

  • Kontozova-Deutsch V, Cardell C, Urosevic M, Ruiz-Agudo E, Deutsch F, Van Grieken R (2011) Characterization of indoor and outdoor atmospheric pollutants impacting architectural monuments: the case of San Jerónimo Monastery (Granada, Spain). Environ Earth Sci 63:1433–1445

    Article  Google Scholar 

  • Kulshreshtha NP, Punuru AR, Gauri KL (1989) Kinetics of the reaction of SO2 with marble. J Mater Civil Eng 1:60–72

    Article  Google Scholar 

  • Lan TTN, Nishimura R, Tsujino Y, Satoh Y, Thoa NTP, Yokoi M, Maeda Y (2005) The effects of air pollution and climatic factors on atmospheric corrosion of marble under field exposure. Corros Sci 47:1023–1038

    Article  Google Scholar 

  • Lefévre RA, Ausset P (2002) Atmospheric pollution and building materials: stone and glass. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Special Publications, vol 205. Geological Society, London, pp 329–345

    Google Scholar 

  • Lindberg BJ, Hamrin K, Johansson G, Gelius U, Fahlman A, Nordling C, Siegbahn K (1970) Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure. Physica Scryta 1:286–287

    Article  Google Scholar 

  • Liu Y, Bisson TM, Yang H, Xu Z (2010) Recent developments in novel sorbents for flue gas clean up. Fuel Process Technol 91:1175–1197

    Article  Google Scholar 

  • López-Arce P, Doehne E, Martin W, Pinchin S (2008) Sales de sulfato magnésico y materiales de edificios históricos: simulación experimental de laminaciones en calizas mediante ciclos de humedad relativa y cristalización de sales. Materiales de Construcción 58(289–290):125–142

    Google Scholar 

  • López-Arce P, García-Guinea J, Benavente D, Tormo L, Doehne E (2009) Deterioration of dolostone by magnesium sulphate salt: an example of incompatible building materials at Bonaval Monastery. Constr Build Mater 23(2):846–855

    Article  Google Scholar 

  • Luque A, Cultrone C, Sebastián E, Cazalla O (2008) Evaluación de la eficacia de tratamientos en el incremento de la durabilidad de una calcarenita bioclástica (Granada, España), vol 58(292), pp 115–128

  • Luque A, Sebastián EM, Cultrone G, Ruiz-Agudo E (2008) Análisis mediante XPS para la determinación de yeso neoformado por contaminación mediante SO2. In: Proceedings of 9th international congress on heritage and building conservation, Seville, pp 75–80

  • Luque A, Leiss B, Álvarez-Lloret P, Cultrone G, Siegesmund S, Sebastián E, Cardell C (2011) Potential thermal expansion of calcitic and dolomitic marbles from Andalusia (Spain). J Appl Crystallogr 44:1227–1237

    Article  Google Scholar 

  • Malaga-Starzec K, Panas I, Lindqvist O (2004) Model study of initial adsorption of SO2 on calcite and dolomite. Appl Surf Sci 222:82–88

    Article  Google Scholar 

  • Martín JD (2004) A software package for powder X-ray diffraction analysis. Lgl. Dep. GR 1001/04

  • Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-Ray photoelectron spectroscopy. In: Chastain J (ed) Perkin-Elmer Corporation, Minneapolis, pp 72

  • Nývlt J (2001) Solubilities of magnesium sulphite. J Therm Anal Calorim 66:509–512

    Article  Google Scholar 

  • Olaru M, Aflori M, Simionescu B, Doroftei F, Stratulat L (2010) Effect of SO2 dry deposition on porous dolomitic limestones. Materials 3(1):216–231

    Article  Google Scholar 

  • Pinaev VA (1964) Mutual solubility of magnesium sulphite, bisulfite and sulfate. Zhirnal Prikladnoi Khimii 37:1361–1362

    Google Scholar 

  • Przepiórski J, Czyzewski A, Kapica J, Moszynski J, Grzmil B, Tryba B, Mozia S, Morawski AW (2012) Low temperature removal of SO2 traces from air by MgO-loaded porous carbons. Chem Eng J 191:147–153

    Article  Google Scholar 

  • Rodríguez-Navarro C, Sebastián E (1996) Role of particulate matter from vehicle exhaust on porous building stones (limestone) sulfation. Sci Total Environ 187:79–91

    Article  Google Scholar 

  • Rowland CH, Abdulsattar AH (1978) Equilibriums for magnesia wet scrubbing of gases containing sulfur dioxide. Environ Sci Technol 12:1158–1162

    Article  Google Scholar 

  • Saiz-Jimenez C, Brimblecombe P, Camuffo D, Lefevre RA, Van Grieken R (2004) Damages caused to European monuments by air pollution: assessment and preventive measures. In: Saiz-Jimenez (ed) Air Pollution and cultural heritage. London, pp 91–109

  • Santamarina M, Di Cuarto F, Zanna S, Marcus P (2007) Initial surface film on photocurrent spectroscopy (PCS). Electrochim Acta 53:1314–1324

    Article  Google Scholar 

  • Schögg K, Steind M, Friedl A, Weber HK, Sixta H (2006) Calculation of physical property data of the system MgO–SO2–H2O and their implementation in Aspen Plus®. Lenzinger Berichte 86:56–62

    Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Söhnel O, Rieger A (1994) Solubilities of magnesium sulfite hydrates. J Chem Eng Data 39:161–162

    Article  Google Scholar 

  • Tambe S, Gauri KL, Li S, Cobourn WG (1991) Kinetic study of the SO2 reaction with dolomite. Environ Sci Technol 25:2071–2075

    Article  Google Scholar 

  • Tommervik H, Johansen BE, Pedersen JP (1995) Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data. Sci Total Environ 160(161):753–767

    Article  Google Scholar 

  • Török A (2002) Oolitic limestone in polluted atmospheric environment in Budapest weathering phenomena and alterations in physical properties. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Special Publications, vol 205. Geological Society, London, pp 363–379

    Google Scholar 

  • Török A (2008) Black crusts on travertine: factors controlling development and stability. Environ Geol 56:583–594

    Article  Google Scholar 

  • Török A, Licha T, Simon K, Siegesmund S (2011) Urban and rural limestone weathering: the contribution of dust to black crust formation. Environ Earth Sci 63:675–693

    Article  Google Scholar 

  • Torrisi A (2008) XPS study of five fluorinated compounds deposited on calcarenite stone: Part I. Unaged samples. Appl Surf Sci 254:2650–2658

    Article  Google Scholar 

  • Viles HA (1990) The early stages of building stone decay in an urban environment. Atmos Environ 24A:229–232

    Google Scholar 

  • Winkler EM (1966) Important agents of weathering for building and monumental stone. Eng Geol 1:381–400

    Article  Google Scholar 

Download references

Acknowledgments

This research was financed by Research Projects P09-RNM-4905 and FQM 1635 and the Research Group RNM-179 (Junta de Andalucía, Spain). We thank E. Ruiz-Agudo and C. Rodriguez-Navarro for their assistance in the interpretation of chemical analyses and Nigel Walkington for the translation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cultrone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luque, A., Martínez de Yuso, M.V., Cultrone, G. et al. Analysis of the surface of different marbles by X-ray photoelectron spectroscopy (XPS) to evaluate decay by SO2 attack. Environ Earth Sci 68, 833–845 (2013). https://doi.org/10.1007/s12665-012-1786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-1786-9

Keywords

Navigation