Skip to main content

Advertisement

Log in

Development of a conceptual hydrogeological model for the evaluation of residence times of water in soil and groundwater: the state of Hesse case study, Germany

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A regional conceptual hydrogeological model has been developed for evaluating residence times of both, percolate water in the unsaturated zone and groundwater in upper aquifers. The model is based on digitally geo-data bases available at the regional level and has been applied for the entire Federal State of Hesse (Germany) with a spatial resolution of 60 × 60 m. Residence times determined for unconsolidated rock areas typically ranged between 10 and 25 years, whereas residence times of <5 years were assessed for consolidated rock areas. With regard to the implementation of the EU Water Framework Directive, the determined residence times may help to assess the time periods between the introduction of well-targeted groundwater protection measures and their impact on groundwater and surface water quality, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ad-hoc-AG Boden (2005) Bodenkundliche Kartieranleitung. 5. Aufl., Hannover

  • Aller L, Bennett T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings, EPA/600/2-87/035. In: Kerr RS (ed) Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Ada, Oklahoma, USA

  • Arnell NW (1993) Data requirements for macroscale modelling of the hydrosphere. In: Proceedings of the Yokohama Symposium, IAHSPubl.no. 214, 103–139

  • Baumgartner A, Liebscher H-J (1996) Lehrbuch der Hydrologie: Band 1: Allgemeine Hydrologie. 2. Aufl. 694 S.; Gebrüder Bornträger, Berlin Stuttgart

  • Bredehoeft J (2005) The conceptualization model problem-surprise. Hydrol J 13(1):37–46

    Google Scholar 

  • CIS (2009) Guidance on groundwater status and trend assessment. In: Common implementations strategy for the water framework directive (2000/60/EC), Technical Report-2009-026 Guidance document no. 18. Office for Official Publications of the European Communities, Luxembourg

  • CIS (2010) Guidance on risk assessment and the use of conceptual models for groundwater common implementations strategy for the water framework directive (2000/60/EC), Guidance document no. 26. Office for Official Publications of the European Communities, Luxembourg

  • Cushman JH (1986) On Measurement, scale and scaling. Water Res Res 22(2):129–134

    Article  Google Scholar 

  • Dagan G (1984) Solute transport in heterogeneous porous formations. J Fluid Mech 145:151–177

    Article  Google Scholar 

  • Dahan O, McGraw D, Adar E, Pholl G, Bohm B, Thomas J (2004) Multi-variable mixing cell model as a calibration and validation tool for hydrogeologic groundwater modeling. J Hydrol 293:115–136

    Article  Google Scholar 

  • De Lange WJ (1996) NAGROM, a groundwater model for national groundwater management and regional and local studies. European Water Pollution Control 6(5):63–67

    Google Scholar 

  • Denny S, Allen D, Journeay J (2007) DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeol J 15(3):483–493

    Google Scholar 

  • Diepolder GW (1995) Schutzfunktion der Grundwaserüberdeckung. Grundlagen-Bewertung-Darstellung in Karten. In: GLA Fachberichte. Vol 13. Bayerisches Geologisches Landesamt, Müncehn, Germany, S. 5–79

  • Dooge JCI (1985) Hydrological modelling and the parametric formulation of hydrological processes on a large scale. In: WCP-Publications Series no. 96, WMO Technical Document no. 43. WMO Geneva, 1985, S. Appendix C 1–20

  • Douglas DH (1986) Experiments to locate ridges and channels to create a new type of digital elevation models. Cartographica 23(4):29–61

    Article  Google Scholar 

  • EU-GWD (2006) Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off J Eur Communities L 327/19

  • EU-WFD (2000) Directive 2000/60/EC of the European Parliament and the Council of the European Union of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Communities L:327

  • Fairfield J, Leymarie P (1991) Drainage networks from grid digital elevation models. Water Resour Res 30(6):1681–1692

    Google Scholar 

  • Fritsche H-G, Hemfler M, Kämmerer D, Leßmann B, Mittelbach G, Peters A, Pöschl W, Rumohr S, Schlösser-Kluger I (2003) Beschreibung der hydrogeologischen Teilräume von Hessen gemäß EU-Wasserrahmenrichtlinie (EU-WRRL). Geol Jb Hessen 130:5–19

  • Gogu RC, Dassargues A (2000) Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ Geol 39–6:549–559

    Article  Google Scholar 

  • Heinkele T, Voigt HJ, Jahnke C, Hannappel S, Donat E (2002) Charakterisierung der Empfindlichkeit von Grundwasserkörpern, Project report, UBA-Texte 299 22 278, 126 S., Umweltbundesamt, Berlin, Germany

  • Hennings V (ed) (2000) Methodendokumentation Bodenkunde: Auswertungsmethoden zur Beurteilung der Empfindlichkeit und Belastbarkeit von Böden, Geologisches Jahrbuch, Reihe G, Heft SG 1, Schweizerbartsche Verlagsbuchhandlung, Hannoiver, Germany

  • Hergesell M (2003) GIS-based modelling of regional groundwater recharge in Hesse, Germany. Hydrologie in Hessen, Vol 1. Wiesbaden, Germany, p 102

    Google Scholar 

  • Herrmann F (2010) Entwicklung einer Methodik zur großräumigen Modellierung von Grundwasserdruckflächen am Beispiel der Grundwasserleiter des Bundeslandes Hessen. 134 S, Diss Cottbus

  • Hoffmann B (1987) Steuerungsstrategien bei der Grundwasserbewirtschaftung. Z dt geol Ges 138:249–259

    Google Scholar 

  • Hölting B, Haertlé T, Hohrberger K-H, Nachtigall KH, Villinger E, Weinzierl W, Wrobel J-P (1995) Konzept zur Ermittlung der Schutzfunktion der Grundwasserüberdeckung. Geologisches Jahrbuch, Reihe C 63:5–24

  • Kinzelbach W (1992) Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grundwasser. 2. Aufl., Oldenburg Verlag, München/Wien

  • Kollet SJ, Maxwell RM (2006) Integrated surface-groundwater flow modeling: a free-surface overland flow boundary condition in a parallel groundwater flow model. Adv Water Resour 7(29):945–958

    Article  Google Scholar 

  • Kunkel R, Wendland F (1997) WEKU—a GIS-supported stochastic model of groundwater residence times in upper aquifers for the supraregional groundwater management. Environ Geol 30(1–2):1–9

    Article  Google Scholar 

  • Kunkel R, Eisele M, Schäfer W, Tetzlaff B, Wendland F (2008) Planning and implementation of nitrogen reduction measures in catchment areas based on a determination and ranking of target areas. Desalination 226:1–12

    Article  Google Scholar 

  • Leßmann B, Wiegand K, Scharpff H-J (2001) Die Hydrogeologie des vulkanischen Vogelsberges. Geol. Abh. Hessen, 108:144 S., Wiesbaden

    Google Scholar 

  • Linz H, Shiklomanov I, Mostefakara K (1990) Chapter 4, Hydrology and water. In: Likely impact of climate change. IPCC WGII report, WMO/UNEP, Geneva

  • Mark DM (1984) Automatic detection of drainage networks from digital elevation models. Cartographica 21(2–3):168–178

    Article  Google Scholar 

  • McDonald MG, Harbaugh AW (2003) The history of MODFLOW. Ground Water 41(2):280–283

    Article  Google Scholar 

  • Merz C, Steidl J, Dannowski R (2009) Parameterization and regionalization of redox based denitrification for GIS-embedded nitrate transport modeling in Pleistocene aquifer systems. Environ Geol 587:1587–1599

    Article  Google Scholar 

  • Morris DG, Heerdegen RG (1988) Automatically derived catchment boundaries and channel networks and their hydrological applications. Geomorphology 1(2):131–141

    Article  Google Scholar 

  • Müller U, Raissi F (2002) Arbeitshilfe für bodenkundliche Stellungnahmen und Gutachten im Rahmen der Grundwassernutzung. Arbeitshefte Boden. Niedersaechsisches Landesamt fuer Bodenforschung, Hannover, Germany

  • Neukum C, Hötzl H (2007) Standardization of vulnerability maps. Environ Geol 51(5):689–694

    Google Scholar 

  • O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process 28:323–344

    Google Scholar 

  • Panagopoulos G, Antonakos A, Lambrakis N (2006) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol J 14(6):894–911

    Google Scholar 

  • Plate EJ (1992) Skalen in der Hydrologie, Zur Definition von Begriffen, Regionalisierung hydrologischer Parameter, Beitragssammlung Deutsche Forschungsgemeinschaft. Bonn, Germany, pp 33–44

    Google Scholar 

  • Poehls DJ, John-Smith G (2009) Encyclopedic dictionary of hydrogeology, Elsevier

  • Stigter T, Ribeiro L, Dill A (2006) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14(1):79–99

    Google Scholar 

  • Tetzlaff B, Schreiner H, Vereecken H, Wendland F (2009) Modellgestützte Analyse signifikanter Phophorbelastungen in hessischen Oberflächengewässern aus diffusen und punktuellen Quellen. Reihe Energie & Umwelt / Energy & Environment. Vol 29. 149 S.; Forschungszentrum Jülich GmbH, Jülich, Germany

  • Tomlin C, Ward R (2009) Conceptual modelling and identification of receptors as a basis for groundwater quality assessment. In: Quevauvillier P, Fouillac A-M, Grath J, Ward R Groundwater monitoring. Wiley pp 37–49

  • Trefry MG, Muffels C (2007) FEFLOW: a finite-element ground water flow and transport modeling tool. Ground Water 45(5):525–528

    Article  Google Scholar 

  • Uhlenbrook S (2005) Von der Abflussbildungsprozessforschung zur prozess-orientierten modellierung—ein review. Hydrol Wasserbewirtsch 49(1):13–24

    Google Scholar 

  • Uhlig M, Gebel M, Halbfaß S, Liedl R (2010) Mesoskalige modellierung dergrundwasserbürtigen nitratbelastung von Fließgewässern. Grundwasser 15:163–176

    Article  Google Scholar 

  • UNESCO-UNEP (1990) The impact of large water projects on the environment. Proc Int Symp pp. 21–31

  • Van der Heijde P (1985) Groundwater management: the use of numerical models. In: sBand 5 Water resources monograph, volume 5, American Geophysical Union. ISBN 0875903142, 9780875903149

  • Vereecken H, Maes J, Feyen J, Darius P (1989) Estimating the soil moisture retention characteristics from texture, bulk density, and carbon content. Soil Sci Soc Am J 1484:389–403

    Google Scholar 

  • Voigt H-J, Radschinski J (2007) Conceptual Model. In: Knödel K, Lange G, Voigt HJ Environmental Geology - Handbook of Field Methods and Case Studies. Springer, Berlin, Heidelberg, New York, S. 963–1001

  • Wendland F (1992) Die Nitratbelastung in den Grundwasserlandschaften „alten“Bundesländer (BRD). Berichte aus der Ökologischen Forschung. Forschungszentrum Jülich GmbH, Jülich, Germany

  • Wendland F, Albert H, Bach M and Schmidt R (eds) (1993) Atlas zum Nitratstrom in der Bundesrepublik Deutschland, Springer, Berlin, Heidelberg, New York

  • Wendland F, Kunkel R, Voigt HJ (2004) Assessment of groundwater residence times in the pore aquifers of the River Elbe Basin. Environ Geol 46(1):1–9

    Google Scholar 

  • Wendland F, Behrendt H, Gömann H, Hirt U, Kreins P, Kuhn U, Kunkel R and Tetzlaff B (2009) Determination of nitrogen reduction levels necessary to reach groundwater quality targets in large river basins: the Weser basin case study, Germany. Nutrient Cycling in Agroecosystems 85 (1): 63–78

    Google Scholar 

  • Wendland F, Berthold G, Fritsche J-G., Herrmann F, Kunkel R, Voigt H-J and Vereecken H (2011) Konzeptionelles hydrogeologisches Modell zur Analyse und Bewertung von Verweilzeiten in Hessen. In: Grundwasser: Digital Object Identifiers doi:10.1007/s00767-011-0169-6

  • Wilder H, Schöbel T (2008) Leitfaden zur Schutzfunktionsbewertung der Grundwasserüberdeckung, 52 S., Geologischer Dienst Nordrhein-Westfalen, Krefeld

  • Wösten JHM, Pachepsky YaA, Rawls WJ (2001) Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J Hydrol 251:123–150

    Article  Google Scholar 

  • Yates D (1994) WatBal—an integrated water balance model for climate impact assessment for river runoff. IIASA Working Paper WP-94-64, IIASA, Laxenburg

  • Zheng C (2008) MIKE SHE: Software for Integrated Surface Water/Ground Water Modeling. Ground Water 36(6): 797

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wendland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, F., Berthold, G., Fritsche, JG. et al. Development of a conceptual hydrogeological model for the evaluation of residence times of water in soil and groundwater: the state of Hesse case study, Germany. Environ Earth Sci 67, 2239–2250 (2012). https://doi.org/10.1007/s12665-012-1665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-1665-4

Keywords

Navigation