Skip to main content
Log in

High-speed visualization of acoustically excited cavitation bubbles in a cluster near a rigid boundary

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

In the present work, high-speed visualizations at one million frames/s have been used to study the oscillation characteristics of acoustic cavitation bubbles. The bubbles are generated by acoustic cavitation using an ultrasound transducer with an excitation frequency of 75 kHz near a rigid surface and the medium used is deionized water. The cavitation bubbles tend to collect in clusters near solid boundaries, where they are visualized using a high-speed camera. The collective oscillations give rise to many interesting phenomena like bubble collapse, coalescence, fragmentation and bubble translation. The image sequences provided here contribute to the better understanding of the entire lifecycle of acoustic cavitation bubbles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Apfel RE (1997) Sonic effervescence: a tutorial on acoustic cavitation. J Acoust Soc Am 101:1227–1237

    Article  Google Scholar 

  • Arora M, Junge L, Ohl CD (2005) Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field. Ultrasound Med Biol 31:827–839

    Article  Google Scholar 

  • Benjamin TB, Ellis aT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philos Trans A Math Phys Eng Sci 260:221–240

    Article  Google Scholar 

  • Birkin PR, Offin DG, Vian CJB, Leighton TG (2011) Multiple observations of cavitation cluster dynamics close to an ultrasonic horn tip. J Acoust Soc Am 130:3379–3388

    Article  Google Scholar 

  • Bjerknes V (1906) Fields of force. Columbia University Press, New York

    MATH  Google Scholar 

  • Bremond N, Arora M, Ohl CD, Lohse D (2006) Controlled multibubble surface cavitation. Phys Rev Lett 96(224):501

    Google Scholar 

  • Brujan EA, Ikeda T, Yoshinaka K, Matsumoto Y (2011) The final stage of the collapse of a cloud of bubbles close to a rigid boundary. Ultrason Sonochem 18:59–64

    Article  Google Scholar 

  • Chivate MM, Pandit AB (1995) Quantification of cavitation intensity in fluid bulk. Ultrason Sonochem 2:S19–S25

    Article  Google Scholar 

  • Crum LA (1975) Bjerknes forces on bubbles in a stationary sound field. J Acoust Soc Am 57:1363–1370

    Article  Google Scholar 

  • Crum LA (1980) Measurements of the growth of air bubbles by rectified diffusion. J Acoust Soc Am 68:203–211

    Article  Google Scholar 

  • Crum LA (1984) Acoustic cavitation series: part five rectified diffusion. Ultrasonics 22:215–223

    Article  Google Scholar 

  • Duda RO, Hart PE (1972) Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15:11–15

    Article  MATH  Google Scholar 

  • Eller A, Flynn HG (1969) Generation of subharmonics of order one half by bubbles in a sound field. J Acoust Soc Am 46:722–727

    Article  Google Scholar 

  • Esche R (1952) Untersuchung der Schwingungskavitation in Flüssigkeiten. Akust Beihefte 2:208–218

    Google Scholar 

  • Hansson I, Mørch KA (1980) The dynamics of cavity clusters in ultrasonic (vibratory) cavitation erosion. J Appl Phys 51:4651–4658

    Article  Google Scholar 

  • Hansson I, Kedrinskii V, Mørch KA (1982) On the dynamics of cavity clusters. J Phys D Appl Phys 15:1725–1734

    Article  Google Scholar 

  • Hough PVC (1962) Method and means for recognizing complex patterns. US Patent 3,069,654

  • Illingworth J, Kittler J (1988) A survey of the hough transform. Comput Vision Graph 44:87–116

    Article  Google Scholar 

  • Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Appl Phys 15:495–506

    Article  Google Scholar 

  • Krefting D, Mettin R, Lauterborn W (2004) High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason Sonochem 11:119–123

    Article  Google Scholar 

  • Lauterborn W (1969) On a theory of cavitation thresholds. Acta Acust United Acust 22:48–54

    Google Scholar 

  • Lauterborn W (1970) Resonance curves of gas bubbles in liquids. Acta Acust United Acust 23:73–81

    Google Scholar 

  • Lauterborn W, Bolle H (1975) Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 72:391–399

    Article  Google Scholar 

  • Lauterborn W, Cramer E (1981) Subharmonic route to chaos observed in acoustics. Phys Rev Lett 47:1445–1448

    Article  Google Scholar 

  • Leighton T (1994) The acoustic bubble. Oxford University Press, New York

    Google Scholar 

  • Leighton T (1995) Bubble population phenomena in acoustic cavitation. Ultrason Sonochem 2:S123–S136

    Article  Google Scholar 

  • Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations. Waves and Interactions, Universitätsverlag Göttingen, Göttingen, pp 171–198

  • Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 56:2924–2931

    Google Scholar 

  • Minnaert M (1933) XVI. On musical air-bubbles and the sounds of running water. Philos Mag Ser 7 16:235–248

  • Neppiras EA (1969) Subharmonic and other low frequency emission from bubbles in sound-irradiated liquids. J Acoust Soc Am 46:587–601

    Article  Google Scholar 

  • Neppiras EA (1980) Acoustic cavitation thresholds and cyclic processes. Ultrasonics 18:201–209

    Article  Google Scholar 

  • Neppiras EA, Fill EE (1969) A cyclic cavitation process. J Acoust Soc Am 46:1264–1271

    Article  Google Scholar 

  • Olson HG, Hammitt FG (1969) High-speed photographic studies of ultrasonically induced cavitation. J Acoust Soc Am 46:1272–1283

    Article  Google Scholar 

  • Parlitz U, Mettin R, Luther S, Akhatov I, Voss M, Lauterborn W (1999) Spatio-temporal dynamics of acoustic cavitation bubble clouds. Philos Trans R Soc A Math Phys Eng Sci 357:313–334

    Article  Google Scholar 

  • Peng T (2005) Detect circles with various radii in grayscale image via Hough transform. http://www.mathworks.de/matlabcentral/fileexchange/9168-detect-circles-with-various-radii-in-grayscale-image-via-hough-transform

  • Prosperetti A (1975) Nonlinear oscillations of gas bubbles in liquids. Transient solutions and the connection between subharmonic signal and cavitation. J Acoust Soc Am 57:810–821

    Article  Google Scholar 

  • Rayleigh L (1917) VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag Ser 6 34:94–98

  • Sato M, Shibuya N, Okada N, Tou T, Fujii T (2002) Oscillation mode conversion and energy confinement of acoustically agitated bubbles. Phys Rev E 65(46):302

    Google Scholar 

  • Smith FD (1935) XCVIII. On the destructive mechanical effects of the gas-bubbles liberated by the passage of intense sound through a liquid. Philos Mag Ser 7 19:1147–1151

  • Smith RH, Mesler RB (1972) A photographic study of the effect of an air bubble on the growth and collapse of a vapor bubble near a surface. J Basic Eng 94:933–940

    Article  Google Scholar 

  • Tervo JT, Mettin R, Lauterborn W (2006) Bubble cluster dynamics in acoustic cavitation. Acta Acust United Acust 92:178–180

    Google Scholar 

  • Vian CJB, Birkin PR, Leighton TG (2010) Cluster collapse in a cylindrical cell: correlating multibubble sonoluminescence, acoustic pressure, and erosion. J Phys Chem C 114:16416–16425

  • Zervacic Z, Lohse D, Van Saarloos W (2010) Collective oscillations in bubble clouds. J Fluid Mech 680(16):114–149

    MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative. We also thank the Bayerische Forschungsstiftung (BFS) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haresh Anant Vaidya.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaidya, H.A., Ertunç, Ö., Lichtenegger, T. et al. High-speed visualization of acoustically excited cavitation bubbles in a cluster near a rigid boundary. J Vis 20, 359–368 (2017). https://doi.org/10.1007/s12650-015-0280-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-015-0280-3

Keywords

Navigation