Skip to main content
Log in

A semantic-enhanced trajectory visual analytics for digital forensic

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

With the increasing application of GPS devices, trajectory data have been frequently adopted in digital forensics because it can encompass spatial and temporal aspects of suspects’ movements. However, a lack of semantic information causes difficulty of linking the trajectories with the activities of suspects. Using the situation of a kidnapping, this paper proposes a semantic-enhanced method in trajectory analysis, which categorizes the daily activities of suspects into different semantic types by connecting trajectory data with transaction data. In the meantime, we present an interactive visualization system with four inner-linked views to provide a collaborative visual analytics of trajectory and transaction data in multiple perspectives. In the case study, the kidnapping investigation is used to demonstrate how the system works on the routine pattern analysis of suspects, the detection of abnormal behaviors, and the association exploration among suspects and their abnormal behaviors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andrienko G, Andrienko N (2008) Spatio-temporal aggregation for visual analysis of movements[C]. In: Visual Analytics Science and Technology, VAST’08. IEEE Symposium, pp 51–58

  • Andrienko N, Andrienko G, Fuchs G (2013) Towards privacy-preserving semantic mobility analysis[C]. In: EuroVis workshop on visual analytics. The Eurographics Association, pp 19–23

  • Aravecchia M, Calderara S, Chiossi S, Cucchiara R (2010) A videosurveillance data browsing software architecture for forensics: from trajectories similarities to video fragments[C]. In: Proceedings of the 2nd ACM workshop on Multimedia in forensics, security and intelligence. ACM, pp 37–42

  • Beebe NL, Clark JG (2005) A hierarchical, objectives-based framework for the digital investigations process[J]. Digit Inv 2(2):147–167

    Article  Google Scholar 

  • Boyandin I, Bertini E, Lalanne D (2010) Using flow maps to explore migrations over time[C]. In: Geospatial Visual Analytics Workshop in conjunction with the 13th AGILE International Conference on Geographic Information Science. vol. 2, no. 3

  • Carrier B, Spafford EH (2003) Getting physical with the digital investigation process[J]. Int J Digit Evid 2(2):1–20

    Google Scholar 

  • Casey E (2011) Digital evidence and computer crime: forensic science, computers and the internet[M]. Academic press

  • Chainey S, Ratcliffe J (2005) GIS and crime mapping[M]. Wiley

  • Choi H, Lee H, Kim H (2009) Fast detection and visualization of network attacks on parallel coordinates[J]. Comput Secur 28(5):276–288

    Article  Google Scholar 

  • Ester M, Kriegel H P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd (vol. 96). pp 226–231

  • Garfinkel Simson L (2010) Digital forensics research: the next 10 years[J]. Digit Inv 7:S64–S73

    Article  Google Scholar 

  • Guidance Software. EnCase Forensics—Computer Forensics Data Col-lection for Digital Evidence Examiners[EB/OL] (2014) http://www.guidancesoftware.com/encase-forensic.htm. Accessed on October

  • Guo H, Wang Z, Yu B, Zhao H, Yuan X (2011) TripVista: triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection[C]. In: Pacific Visualization Symposium (PacificVis), IEEE, pp 163–170

  • Heim K (2014) Visualization and modeling for crime data indexed by road segments[D]. George Mason University

  • Huebner E, Bem D, Bem O (2007) Computer forensics–past, present and future[J]. Inform Secur Tech Rep 8(2):32–46

    Google Scholar 

  • Kapler T, Wright W (2005) GeoTime information visualization[J]. Inform Vis 4(2):136–146

    Article  Google Scholar 

  • Krüger R, Thom D, Wörner M, Bosch H, Ertl T (2013) Trajectory lenses–a set-based filtering and exploration technique for long-term Trajectory Data[C]. In: Computer Graphics Forum vol. 32, no. 3pt4). Blackwell Publishing Ltd, pp 451–460

  • Krüger R, Thom D, Ertl T (2014) Visual analysis of movement behavior using web data for context enrichment. In: Pacific Visualization Symposium (PacificVis). IEEE, pp 193–200

  • Lang A, Bashir M, Campbell R, DeStefano L (2014) Developing a new digital forensics curriculum[J]. Digit Inv 11:S76–S84

    Article  Google Scholar 

  • Lee J G, Han J, Li X (2008) Trajectory outlier detection: a partition-and-detect framework[C]. In: Data Engineering, ICDE. IEEE 24th International Conference, pp 140–149

  • Liao Z, Yu Y, Chen B (2010) Anomaly detection in GPS data based on visual analytics[C]. In: Visual Analytics Science and Technology (VAST), IEEE Symposium, pp 51–58

  • Malik A, Maciejewski R, Collins TF, Ebert DS (2010) Visual analytics law enforcement toolkit. In: Technologies for Homeland Security (HST). IEEE International Conference, pp 222–228

  • Mburu L, Helbich M (2014) Evaluating the accuracy and effectiveness of criminal geographic profiling methods: the case of dandora, Kenya[J]. The Professional Geographer

  • Noblett MG, Pollitt MM, Presley LA (2000) Recovering and examining computer forensic evidence[J]. Forensic Sci Commun 2(4):1–13

    Google Scholar 

  • Pasquale L, Yu Y, Salehie M, Cavallaro L, Tun TT, Nuseibeh B (2013) Requirements-driven adaptive digital forensics[C]. In: Requirements Engineering Conference (RE), 21st IEEE International. IEEE, pp 340–341

  • Pirolli P, Card S (2005) The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis[C]. In: Proceedings of International Conference on Intelligence Analysis (vol. 5). pp 2–4

  • Pollitt M (2010) A history of digital forensics[M]. In: Advances in Digital Forensics VI. Springer, Berlin, pp 3–15

  • Reith M, Carr C, Gunsch G (2002) An examination of digital forensic models[J]. Int J Digit Evid 1(3):1–12

    Google Scholar 

  • Scheepens R, Willems N, van de Wetering H, van Wijk JJ (2011) Interactive visualization of multivariate trajectory data with density maps[C]. In: Pacific Visualization Symposium (PacificVis). IEEE, pp 147–154

  • Schreck T, Bernard J, Von Landesberger T, Kohlhammer J (2009) Visual cluster analysis of trajectory data with interactive kohonen maps[J]. Inform Vis 8(1):14–29

    Article  Google Scholar 

  • Shiravi H, Shiravi A, Ghorbani AA (2012) A survey of visualization systems for network security[J]. Vis Comput Gr IEEE Trans 18(8):1313–1329

    Article  Google Scholar 

  • Song X, Zhang Q, Sekimoto Y, Horanont T, Ueyama S, Shibasaki R (2013) Modeling and probabilistic reasoning of population evacuation during large-scale disaster[C]. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge discovery and data mining. ACM, pp 1231–1239

  • Song X, Zhang Q, Sekimoto Y, Shibasaki R (2014) Prediction of human emergency behavior and their mobility following large-scale disaster[C]. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge discovery and data mining. ACM, pp 5–14

  • Tominski C, Schumann H, Andrienko G, Andrienko N (2012) Stacking-based visualization of trajectory attribute data[J]. Vis Comput Gr IEEE Trans 18(12):2565–2574

    Article  Google Scholar 

  • VAST Challenge Homepage [EB/OL] (2014) http://vacommunity.org/VAST+Challenge+2014. Accessed on October

  • Wang Z, Lu M, Yuan X, Zhang J, Wetering HVD (2013) Visual traffic jam analysis based on trajectory data[J]. Vis Comput Gr IEEE Trans 19(12):2159–2168

    Article  Google Scholar 

  • X-Ways Software for Forensics, Data Recovery and ITSecurity X-Ways Software Technology AG [EB/OL] (2014) http://www.winhex.com/. Accessed on October

  • Zhao Y, Liang X, Fan X, Wang Y, Yang M, Zhou F (2014) MVSec: multi-perspective and deductive visual analytics on heterogeneous network security data[J]. J Vis 17(3):181–196

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous reviewers for their comments. The authors would also like to thank the data providers, IEEE VAST Challenge. This work is supported by the National Natural Science Foundation of China under Grant Nos. 61103108 and 61402540, National Science & Technology Pillar Program of China under Grant Nos. 2012BAH08B01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Zf., Li, Y., Peng, Y. et al. A semantic-enhanced trajectory visual analytics for digital forensic. J Vis 18, 173–184 (2015). https://doi.org/10.1007/s12650-015-0276-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-015-0276-z

Keywords

Navigation