Skip to main content
Log in

Single camera time-resolved 3D tomographic reconstruction of a pulsed gas jet

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Experimental characterization of micro-jets is challenging because of the small dimensions of the micro-nozzle. In this study, we propose a new technique to visualize the instantaneous 3D structure of a pulsed gas micro-jet. Using phase-averaging of Schlieren visualizations obtained with a high-speed camera and 3D reconstruction through a filtered back projection algorithm, it is possible to follow the high-speed dynamics of the pulsed jet. The experimental technique is illustrated by a 3D reconstruction of a pulsed helium micro-jet. The technique is simple yet very useful. To our knowledge, it is the only experimental method to analyze the instantaneous 3D structure and high frequency dynamics of pulsed micro-jets.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arnaud E, Memin E, Sosa R, Artana G (2006) A fluid motion estimator for Schlieren imaging velocimetry. Lect Notes Comput Sci 3951:198–210

    Article  Google Scholar 

  • Atcheson B, Ihrke I, Heidrich W, Tevs A, Bradley D, Magnor M, Seidel HP (2008) Time-resolved 3D capture of non-stationary gas flows. ACM Trans Graph 27(5):132

    Article  Google Scholar 

  • Aubrun S, McNally J, Alvi F, Kourta A (2011) Separation flow control on a generic ground vehicle using steady microjet arrays. Exp Fluids 51(5):1177–1187. doi:10.1007/s00348-011-1132-0

    Article  Google Scholar 

  • Castelain T, Sunyach M, Juvé D, Béra JC (2008) Jet-noise reduction by impinging microjets: an acoustic investigation testing microjet parameters. AIAA J 46(5):1081–1087

    Article  Google Scholar 

  • Dalziel B, Hughes GO, Sutherland BR (2000) Whole-field density measurements by ‘synthetic Schlieren’. Exp Fluids 28(4):322–335

    Article  Google Scholar 

  • Feng J, Okamoto K, Tsuru D, Madarame H, Fumizawa M (2002) Visualization of 3D gas density distribution using optical tomography. ChemEng J 86:243–250

    Google Scholar 

  • Fermigier M, Guyon E, Jenffer P, Petit L (1980) A direct optical measurement of velocity gradients. Appl Phys Lett 36:361–362

    Article  Google Scholar 

  • Gau C, Shen CH, Wang ZB (2009) Peculiar phenomenon of micro-free-jet flow. Phys Fluids. doi:10.1063/1.3224012 (21, 092001)

    Google Scholar 

  • Goldhahn E, Seume J (2007) The background oriented Schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field. Exp Fluids 43:241–249

    Article  Google Scholar 

  • Goldhahn E, Alhaj O, Herbst F, Seume J (2009) Quantitative measurements of three dimensional density fields using the background oriented Schlieren technique. Imaging Meas Methods: NNFM 106:135–144

    Article  Google Scholar 

  • Goldstein RJ (1996) Fluid mechanics measurements. Taylor & Francis, Washington

    Google Scholar 

  • Grinstein FF, Gutmark E, Parr T (1995) Near field dynamics of subsonic free square jets. A computational and experimental study. Phys Fluids 7:1483–1497. doi:10.1063/1.868534

    Article  Google Scholar 

  • Joseph P, Amandolèse X, Aider JL (2012) Drag reduction on the 25° slant angle Ahmed reference body using pulsed jets. Exp Fluids 52(5):1169–1185. doi:10.1007/s00348-011-1245-5

    Article  Google Scholar 

  • Joseph P, Amandolèse X, Aider JL (2013) Flow control using MEMS pulsed micro-jets on the Ahmed body. Exp Fluids 54(1):1442. doi:10.1007/s00348-012-1442-x

    Article  Google Scholar 

  • Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, New York

    MATH  Google Scholar 

  • Krebs F, Silva F, Sciamarella D, Artana G (2012) A three-dimensional study of the glottal jet. Exp Fluids 52(5):1133–1147. doi:10.1007/s00348-011-1247-3

    Article  Google Scholar 

  • Lempert W, Boehm M, Jiang N, Gimelshein S, Levin D (2003) Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows. Exp Fluids 34:403–411

    Article  Google Scholar 

  • Merzkirch W (1974) Flow visualization. Academic Press Inc., New York

    MATH  Google Scholar 

  • Moríñigo GH, Quesada JH (2008) Analysis of viscous heating in a micro-rocket flow and performance. J Therm Sci 17(2):116–124

    Article  Google Scholar 

  • Oppenheim AV, Schafer RW (1989) Discrete-time signal processing. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Masanori O, Kenta H, Hiroko K, Kazuo M (2011) Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented Schlieren (CGBOS) technique. Meas Sci Technol 22:104011

    Article  Google Scholar 

  • Radon J (1917) On the determination of functions from their integrals along certain manifolds. Ber Saechsische Akad Wiss 29:262–277

    Google Scholar 

  • Settles GS (2001) Schlieren and shadowgraph techniques: visualizing phenomena in transparent media. Springer Verlag, Berlin

    Book  Google Scholar 

  • Shepp LA, Logan BF (1974) The Fourier reconstruction of a head section. IEEE Trans Nucl Sci NS 21:21–43

    Article  Google Scholar 

  • Timmerman BH, Watt DW (1995) Tomographic high-speed digital holographic interferometry. Meas Sci Technol 6:1270–1277

    Article  Google Scholar 

  • Tropea C, Yarin A, Foss JF (2007) Handbook of experimental fluid mechanics. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Vasiliev LA (1971) Schlieren methods. Israel Program for Scientific Translations, New York

    Google Scholar 

  • Venkatakrishnan L, Meier GEA (2004) Density measurements using background oriented Schlieren technique. Exp Fluids 37:237–247

    Article  Google Scholar 

  • Venkatakrishnan L, Suriyanarayanan P (2009) Density field of supersonic separated flow past an afterbody nozzle using tomographic reconstruction of BOS data. Exp Fluids 47:463–473

    Article  Google Scholar 

Download references

Acknowledgments

This research has been performed with the support of the Bernardo Houssay Program (Ministerio de Ciencia, Tecnología e Innovación Productiva-CONICET, Republica Argentina; Ministère de l’enseignement supérieur et de la recherche, République Française; Ministère des affaires étrangères et européennes) and of the LIA PMF-FMF (French-Argentinian International Associated Laboratory in Physics and Fluid Mechanics) and of the French Agence pour le Développement Et la Maîtrise de l’Energie (ADEME) through the project CARAVAJE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Cabaleiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabaleiro, J.M., Aider, J.L., Artana, G. et al. Single camera time-resolved 3D tomographic reconstruction of a pulsed gas jet. J Vis 16, 263–274 (2013). https://doi.org/10.1007/s12650-013-0176-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-013-0176-z

Keywords

Navigation