Skip to main content

Advertisement

Log in

Valorization of Different Wastes and Their Use for the Design of Multifunctional Eco-catalysts

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The desire to protect the environment for future generations has led to the reutilization of all recoverable and recyclable wastes. Consequently, different residues from various sources were collected to make mixed compounds to be used as catalyst supports. Such wastes included sand and cement from the building industry, nonreturnable glass bottles, and used tires. The synthesized supports were impregnated with molybdophosphoric acid, a heteropolyacid with Keggin structure, and characterized by potentiometric titration, optical microscopy, SEM–EDS, and textural property analyses. The bifunctional properties of the new catalysts were evaluated in two relevant transformations in green conditions: (i) the selective oxidation of sulfides to sulfoxides using a green oxidant such as tert-butyl hydroperoxide, and (ii) the multicomponent synthesis of 3,4-dihydropyrimidinones (Biginelli reaction, catalyzed in acid media).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Clark, J., Macquarrie, D.: Handbook of Green Chemistry and Technology. Blackwell Science Ltd., Oxford (2002)

    Book  Google Scholar 

  2. Anastas, P.T., Kirchhoff, M.M.: Origins, current status, and future challenges of Green Chemistry. Acc. Chem. Res. 35, 686–694 (2002)

    Article  Google Scholar 

  3. Manley, J.B., Anastas, P.T., Cue Jr., B.W.: Frontiers in Green Chemistry: meeting the grand challenges for sustainability in R&D and manufacturing. J. Clean. Prod. 16, 743–750 (2008)

    Article  Google Scholar 

  4. Clark, J.H.: Green chemistry: today (and tomorrow). Green Chem. 8, 17–21 (2006)

    Article  Google Scholar 

  5. Martínez, J.D., Puy, N., Murillo, R., García, T., Navarro, M.V., Mastral, A.M.: Waste tyre pyrolysis—a review. Renew. Sust. Energ. Rev. 23, 179–213 (2013)

    Article  Google Scholar 

  6. Williams, P.T.: Pyrolysis of waste tyres: a review. Waste Manag. 33, 1714–1728 (2013)

    Article  Google Scholar 

  7. Sheldon, R.A., Arends, I., Hanefeld, U.: Green Chemistry and Catalysis. Wiley, Weingheim (2007)

    Book  Google Scholar 

  8. Tundo, P., Romanelli, G.P., Vázquez, P.G., Lorisa, A., Aricò, F.: Multiphase oxidation of aniline to nitrosobenzene with hydrogen peroxide catalyzed by heteropolyacids. Synlett 7, 967–970 (2008)

    Article  Google Scholar 

  9. Palermo, V., Romanelli, G.P., Vázquez, P.G.: Mo-based Keggin heteropolyacids as catalysts in the green and selective oxidation of diphenyl sulfide. J. Mol. Catal. A Chem. 373, 142–150 (2013)

    Article  Google Scholar 

  10. Tundo, P., Romanelli, G.P., Vázquez, P.G., Aricò, F.: Multiphase oxidation of alcohols and sulfides with hydrogen peroxide catalyzed by heteropolyacids. Catal. Commun. 11, 1181–1184 (2010)

    Article  Google Scholar 

  11. Villabrille, P., Romanelli, G., Vázquez, P., Cáceres, C.: Vanadium-substituted Keggin heteropolycompounds as catalysts for ecofriendly liquid phase oxidation of 2,6-dimethylphenol to 2,6-dimethyl-1,4-benzoquinone. Appl. Catal. A Gen. 270, 101–110 (2004)

    Article  Google Scholar 

  12. Romanelli, G.P., Villabrille, P.I., Vázquez, P.G., Cáceres, C.V., Tundo, P.: Phenol and naphthol oxidation to quinones with hydrogen peroxide using vanadium-substituted Keggin heteropoly acid as catalyst. Lett. Org. Chem. 5, 332–335 (2008)

    Article  Google Scholar 

  13. Palermo, V., Romanelli, G.P., Vazquez, P.G.: Simple and friendly sulfones synthesis using aqueous hydrogen peroxide with a reusable Keggin molybdenum heteropolyacid, immobilized on aminopropyl-functionalized silica. Phosphorus Sulfur Silicon Relat. Elem. 184, 3258–3268 (2009)

    Article  Google Scholar 

  14. Palermo, V., Villabrille, P.I., Vazquez, P.G., Caceres, C.V., Tundo, P., Romanelli, G.P.: Role of vanadium and pyridine in heteropolycompounds for selective oxidation of alcohols with hydrogen peroxide. J. Chem. Sci. 125, 1375–1383 (2013)

    Article  Google Scholar 

  15. Romanelli, G.P., Bennardi, D., Ruiz, D.M., Baronetti, G., Thomas, H.J., Autino, J.C.: A solvent-free synthesis of coumarins using a Wells–Dawson heteropolyacid as catalyst. Tetrahedron Lett. 45, 8935–8939 (2004)

    Article  Google Scholar 

  16. Torviso, R., Mansilla, D., Belizán, A., Alesso, E., Moltrasio, G., Vázquez, P., Pizzio, L., Blanco, M., Cáceres, C.: Catalytic activity of Keggin heteropolycompounds in the Pechmann reaction. Appl. Catal. A Gen. 339, 53–60 (2008)

    Article  Google Scholar 

  17. Bennardi, D.O., Romanelli, G.P., Jios, J.L., Vázquez, P.G., Cáceres, C.V., Autino, J.C.: Synthesis of substituted flavones and arylchromones using P and Si Keggin heteropolyacids as catalysts. Heterocycl. Commun. 13, 77–81 (2007)

    Article  Google Scholar 

  18. Bennardi, D.O., Romanelli, G.P., Jios, J.L., Autino, J.C., Baronetti, G.T., Thomas, H.J.: Synthesis of substituted flavones and chromones using a Wells–Dawson heteropolyacid as catalyst. Arkivoc 11, 123–130 (2008)

    Google Scholar 

  19. Heravi, M.M., Derikvand, F., Bamoharram, F.F.: Highly efficient, four-component one-pot synthesis of tetrasubstituted imidazoles using Keggin-type heteropolyacids as green and reusable catalysts. J. Mol. Catal. A Chem. 263, 112–114 (2007)

    Article  Google Scholar 

  20. Heravi, M.M., Sadjadi, S., Oskooie, H.A., Shoar, R.H., Bamoharram, F.F.: Heteropolyacids as heterogeneous and recyclable catalysts for the synthesis of benzimidazoles. Catal. Commun. 9, 504–507 (2008)

    Article  Google Scholar 

  21. Pizzio, L.R., Vázquez, P.G., Cáceres, C.V., Blanco, M.N., Alesso, E.N., Torviso, M.R., Lantaño, B., Moltrasio, G.Y., Aguirre, J.M.: C-alkylation reactions catalyzed by silica-supported Keggin heteropolyacids. J. Appl. Catal. A Gen. 287, 1–8 (2005)

    Article  Google Scholar 

  22. Arias, M., Laurenti, D., Geantet, C., Vrinat, M., Hideyuki, I., Yoshimura, Y.: Gasoline desulfurization by catalytic alkylation over silica-supported heteropolyacids: from model reaction to real feed conversion. Catal. Today 130, 190–194 (2008)

    Article  Google Scholar 

  23. Carreño, M.C.: Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem. Rev. 95, 1717–1760 (1995)

    Article  Google Scholar 

  24. Fernandez, I., Khiar, N.: Recent developments in the synthesis and utilization of chiral sulfoxides. Chem. Rev. 103, 3651–3706 (2003)

    Article  Google Scholar 

  25. Gladysz, J.A.: Introduction: recoverable catalysts and reagents—perspective and prospective. Chem. Rev. 102, 3215–3216 (2002)

    Article  Google Scholar 

  26. Bonadies, F., De Angelis, F., Locati, L., Scettri, A.: A convenient acid-catalyzed oxidation of sulfides to sulfoxides by t-butyl hydroperoxide. Tetrahedron Lett. 37, 7129–7130 (1996)

    Article  Google Scholar 

  27. Biginelli, P.: Aldehyde–urea derivatives of aceto- and oxaloacetic acids. Gazz. Chim. Ital. 23, 360–413 (1893)

    Google Scholar 

  28. Kappe, C.O.: Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc. Chem. Res. 33, 879–888 (2000)

    Article  Google Scholar 

  29. Kappe, C.O.: Biologically active dihydropyrimidones of the Biginelli-type—a literature survey. Eur. J. Med. Chem. 35, 1043–1052 (2000)

    Article  Google Scholar 

  30. Russowsky, D., Canto, R.F.S., Sanches, S.A.A., D’Oca, M.G.M., de Fátima, A., Pilli, R.A., Kohn, L.K., Antonio, M.A., de Carvalho, J.E.: Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: monastrol, oxo-monastrol and oxygenated analogues. Bioorg. Chem. 34, 173–182 (2006)

    Article  Google Scholar 

  31. Sharma, P., Rane, N., Gurram, V.K.: Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 14, 4185–4190 (2004)

    Article  Google Scholar 

  32. Bahekar, S.S., Shinde, D.B.: Synthesis and anti-inflammatory activity of some [4,6-(4-substituted aryl)-2-thioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl]-acetic acid derivatives. Bioorg. Med. Chem. Lett. 14, 1733–1736 (2004)

    Article  Google Scholar 

  33. Stefani, H.A., Oliveira, C.B., Almeida, R.B., Pereira, C.M.P., Braga, R.C., Cella, R., Borges, V.C., Savegnago, L., Nogueira, C.W.: Dihydropyrimidin-(2H)-ones obtained by ultrasound irradiation: a new class of potential antioxidant agents. Eur. J. Med. Chem. 41, 513–518 (2006)

    Article  Google Scholar 

  34. Rodríguez-Domínguez, J.C., Bernardi, D., Kirsch, G.: ZrCl4 or ZrOCl2 under neat conditions: optimized green alternatives for the Biginelli reaction. Tetrahedron Lett. 48, 5777–5780 (2007)

    Article  Google Scholar 

  35. Cepanec, I., Litvić, M., Filipan-Litvić, M., Grüngold, I.: Antimony(III) chloride-catalysed Biginelli reaction: a versatile method for the synthesis of dihydropyrimidinones through a different reaction mechanism. Tetrahedron 63, 11822–11827 (2007)

    Article  Google Scholar 

  36. Maradur, S.P., Gokavi, G.S.: Heteropoly acid catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Catal. Commun. 8, 279–284 (2007)

    Article  Google Scholar 

  37. Heravi, M.M., Bakhtiari, K., Bamoharram, F.F.: 12-Molybdophosphoric acid: a recyclable catalyst for the synthesis of Biginelli-type 3,4-dihydropyrimidine-2(1H)-ones. Catal. Commun. 7, 373–376 (2006)

    Article  Google Scholar 

  38. Joseph, J.K., Jain, S.L., Sain, B.: Ion exchange resins as recyclable and heterogeneous solid acid catalysts for the Biginelli condensation: an improved protocol for the synthesis of 3,4-dihydropyrimidin-2-ones. J. Mol. Catal. A Chem. 247, 99–102 (2006)

    Article  Google Scholar 

  39. Dong, F., Jun, L., Xinli, Z., Zhiwen, Y., Zuliang, L.: One-pot green procedure for Biginelli reaction catalyzed by novel task-specific room-temperature ionic liquids. J. Mol. Catal. A Chem. 274, 208–211 (2007)

    Article  Google Scholar 

  40. Rafiee, E., Eavani, S., Babaee, E., Toodehroosta, F., Daneshpazhuh, K.: Catalytic performance of heteropoly acids on different supports in the synthesis of dihydropyrimidones. Z. Naturforsch. 63B, 178–182 (2008)

    Google Scholar 

  41. Zendehdel, M., Mobinikhaledi, A., Asgari, A.: Zeolite an efficient catalyst for the Biginelli condensation reaction. J. Incl. Phenom. Macro. Chem. 60, 353–357 (2008)

    Article  Google Scholar 

  42. Nandurkar, N.S., Bhanushali, M.J., Bhor, M.D., Bhanage, B.M.: Y(NO3)3·6H2O: a novel and reusable catalyst for one pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. J. Mol. Catal. A Chem. 271, 14–17 (2007)

    Article  Google Scholar 

  43. Yu, Y., Liu, D., Liu, C., Luo, G.: One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using chloroacetic acid as catalyst. Bioorg. Med. Chem. Lett. 17, 3508–3510 (2007)

    Article  Google Scholar 

  44. Azizian, J., Mohammadi, A.A., Karimi, A.R., Mohammadizadeh, M.R.: KAl(SO4)2·12H2O supported on silica gel as a novel heterogeneous system catalyzed biginelli reaction: one-pot synthesis of di-hydropyrimidinones under solvent-free conditions. Appl. Catal. A Gen. 300, 85–88 (2006)

    Article  Google Scholar 

  45. Ahmed, N., Van Lier, J.E.: TaBr 5-catalyzed Biginelli reaction: one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones under solvent-free conditions. Tetrahedron Lett. 48, 5407–5409 (2007)

    Article  Google Scholar 

  46. Jain, S.L., Prasad, V.V.D.N., Sain, B.: Alumina supported MoO3: an efficient and reusable heterogeneous catalyst for synthesis of 3,4-dihydropyridine-2(1H)-ones under solvent free conditions. Catal. Commun. 9, 499–503 (2008)

    Article  Google Scholar 

  47. Pizzio, L., Vázquez, P., Cáceres, C., Blanco, M.: Tungstophosphoric and molybdophosphoric acids supported on zirconia as esterification catalysts. Catal. Lett. 77, 233–239 (2001)

    Article  Google Scholar 

  48. http://webbook.nist.gov/cgi/cbook.cgi?ID=C2168936&Units=SI&Mask=200#Mass-Spec (2016)

  49. http://webbook.nist.gov/cgi/cbook.cgi?ID=C621089&Units=SI&Mask=200#Mass-Spec (2016)

  50. Memarian, H.R., Mohammadpoor-Baltork, I., Bahrami, K.: Photoinduced electron transfer reactions of aryl benzyl sulfides promoted by 2,4,6-triphenylpyrilium tetrafluoroborate (TP + BF4-). Bull. Korean Chem. Soc. 27(1), 106–110 (2006)

    Article  Google Scholar 

  51. http://webbook.nist.gov/cgi/cbook.cgi?ID=C945517&Units=SI&Mask=200#Mass-Spec (2016)

  52. Ghosh, R., Maiti, S., Chakraborty, A.: In(OTf)3-catalysed one-pot synthesis of 3,4-dihydropyrimidin-2(lH)-ones. J. Mol. Catal. A Chem. 217(1–2), 47–50 (2004)

    Article  Google Scholar 

  53. Joseph, J., Jain, S., Sain, B.: Ion exchange resins as recyclable and heterogeneous solid acid catalysts for the Biginelli condensation: an improved protocol for the synthesis of 3,4-dihydropyrimidin-2-ones. J. Mol. Catal. A Chem. 247(1–2), 99–102 (2006)

    Article  Google Scholar 

  54. Tu, S., Fang, F., Miao, C., Jiang, H., Feng, Y., Shi, D., Wang, X.: One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using boric acid as catalyst. Tetrahedron Lett. 44(32), 6153–6155 (2003)

    Article  Google Scholar 

  55. McMahon, J.B., Gulakowski, R.J., Weislow, O.S., Schultz, R.J., Narayanan, V.L., Clanton, D.J., Pedemonte, R., Wassmundt, F.W., Buckheit Jr., R.W., Decker, W.D.: Diarylsulfones, a new chemical class of nonnucleoside antiviral inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob. Agents Chemother. 37, 754–760 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Universidad Nacional de La Plata (UNLP), CONICET (PIP 003) and ANPCyT (PICT 0409) for financial support. V. P., A. S., P. V., and G. R. are members of CONICET. N. Q. is member of CIC. We also recognize Lilian Osiglio’s technical contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angel G. Sathicq or Patricia G. Vazquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palermo, V., Igal, K., Colombo Migliorero, M.B. et al. Valorization of Different Wastes and Their Use for the Design of Multifunctional Eco-catalysts. Waste Biomass Valor 8, 69–83 (2017). https://doi.org/10.1007/s12649-016-9634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9634-x

Keywords

Navigation