Skip to main content
Log in

Microwave Hydrothermal Carbonization of Human Biowastes

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The challenges of poor sanitation due to poor faecal sludge management, particularly in the developing and other remote regions of developed countries, are well documented. As a potential technological and complementary approach to managing human biowastes, microwave hydrothermal carbonization (M-HTC), a thermochemical process, was used in this study to convert human biowastes into a safe material without any foul odour. The process also recovered value-added products i.e. solid chars and liquid ammonia concentrate. Primary sewage and raw human faecal sludges were subjected to microwave heating at 160, 180 and 200 °C, at different residence times: 30, 60 and 120 min under autogenous pressure. As a result, up to 60 % energy densified chars were recovered from the raw biowastes. The calorific (higher heating) values of chars recovered after the process, particularly those from human faecal sludge, increased from 19.79 up to 25.01 MJ/kg. Also, up to 80 % ammonia was recovered in the liquid fraction of carbonized human biowastes. Solid char yield and other estimated physicochemical properties were observed to be dependent on both the reaction temperatures and residence times of the process. The results of this study show M-HTC is a potential value-added recovery process for managing human biowastes and further provides essential information useful for the design and optimization of a self-sustainable sanitation facility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization (WHO) and UNICEF: Progress on sanitation and drinking water : 2013 update. WHO, Geneva (2013). ISBN 9789241505390

    Google Scholar 

  2. UNICEF for UN Inter-Agency Group for Child Mortality Estimation (IGME): Levels and trends in child mortality report. UNICEF, New York (2012)

  3. Wignarajah, K., Litwiller, E., Fisher, J., Hogan, J.: Simulated human faeces for testing human waste processing technologies in spaces systems. SAE technical paper series, 2006-01-2180, Proceedings of the 36th International Conference on Environmental Systems (ICES), Norfolk, Virginia (2006)

  4. Lehmann, J., da Silva Jr, J.P., Steiner, C., Nehls, T., Zech, W., Glaser, B.: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249, 343–357 (2003)

    Article  Google Scholar 

  5. Schouwa, N.L., Danteravanichb, S., Mosbaeka, H., Tjella, J.C.: Composition of human excreta—a case study from Southern Thailand. Sci. Total Environ. 286, 155–166 (2002)

    Article  Google Scholar 

  6. Feachem, R.G., Bradley, D.J., Garelick, H., Mara, D.D.: Sanitation and disease: health aspects of excreta and wastewater management. Wiley, New york (1983)

    Google Scholar 

  7. Franceys, R., Pickford, J., Reed, R.: A guide to development of on-site sanitation. WHO, Geneva (1992)

    Google Scholar 

  8. Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M., Fuhner, C., Bens, O., Kern, J., Emmerich, K.: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2, 89–124 (2011)

    Article  Google Scholar 

  9. Hong, S.M., Park, J.K., Lee, Y.O.: Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids. Water Res. 38, 1615–1625 (2004)

    Article  Google Scholar 

  10. Tyagi, V.K., Lo, S.L.: Microwave irradiation: a sustainable way for sludge treatment and resource recovery. Renew. Sust. Energ. Rev. 18, 288–305 (2013)

    Article  Google Scholar 

  11. Peterson, A.A., Vogel, F., Lachance, R.P., Froeling, M., Antal, M.J.: Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energ. Environ. Sci. 1, 32–65 (2008)

    Article  Google Scholar 

  12. Cantrell, K.B., Ducey, T., Ro, K.S., Hunt, P.G.: Livestock waste to bioenergy generation opportunities. Bioresour. Technol. 99, 7941–7953 (2008)

    Article  Google Scholar 

  13. Titirici, M.M., Thomas, A., Antonietti, M.: Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J. Chem. 31, 787–789 (2007)

    Article  Google Scholar 

  14. Meyer, S., Glaser, B., Quicker, P.: Technical, economical and climate-related aspects of biochar production technologies: a literature review. Environ. Sci. Technol. 45, 9473–9483 (2011)

    Article  Google Scholar 

  15. Yin, C.: Microwave-assisted pyrolysis of biomass for liquid biofuel production. Bioresour. Technol. 120, 273–284 (2012)

    Article  Google Scholar 

  16. Richel, A., Paquot M.: Conversion of carbohydrates under microwave heating. In: Prof. Chuan-Fa Chang (ed.) Carbohydrates-comprehensive studies on glycobiology and glycotechnology. InTech. doi:10.5772/50628 (2012). ISBN: 978-953-51-0864-1

  17. Islam, K.R., Weil, R.R.: Microwave irradiation of soil for routine measurement of microbial biomass carbon. Bio. Fert. Soils 27, 408–416 (1998)

    Article  Google Scholar 

  18. Guo, L., Li, X., Bo, X., Yang, Q., Zeng, G., Liao, D., Liu, J.: Impacts of sterilization, microwave and ultrasonication pre-treatment on hydrogen production using waste sludge. Bioresour. Technol. 99, 3651–3658 (2008)

    Article  Google Scholar 

  19. Hu, Y., Liu, C., Zhang, Y., Ren, N., Tang, Y.: Microwave-assisted hydrothermal synthesis of nanozeolites with control-label size. Micropor. Mesopor. Mat. 119, 306–314 (2009)

    Article  Google Scholar 

  20. Menendez, J.A., Inguanzo, M., Pis, J.J.: Microwave-induced pyrolysis of sewage sludge. Water Res. 36, 3261–3264 (2002)

    Article  Google Scholar 

  21. Guiotoku, M., Rambo, C.R., Hansel, F.A., Magalhaes, W.L.E., Hotza, D.: Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater. Lett. 63, 2707–2709 (2009)

    Article  Google Scholar 

  22. Sobhy, A., Chaouki, J.: Microwave-assisted biorefinery. Chem. Eng. Trans. 19, 25–30 (2010)

    Google Scholar 

  23. Heaton, K.W., Lewis, S.J.: Stool form scale as a useful guide to intestinal transit time. Scand. J. Gastroentero. 32, 920 (1997)

    Article  Google Scholar 

  24. APHA, Awwa, WEF: Standard methods for the examination of water and wastewater. American Public Health Association, Washington (2005)

    Google Scholar 

  25. He, C., Giannis, A., Wang, J.: Conversion of sewage sludge to clean solid fuel using hydrothermal carbonisation: hydrochar fuel characteristics and combustion behaviour. Appl. Energ. 111, 257–266 (2013)

    Article  Google Scholar 

  26. Sun, X.H., Sumida, H., Yoshikawa, K.: Effects of hydrothermal process on the nutrient release of sewage sludge. Int. J. Waste Resources 3, 124 (2013)

    Google Scholar 

  27. Ramke, H.G., Blohse, D., Lehmann, H.J., Fettig, J.: Hydrothermal carbonisation of organic waste twelfth International Waste Management and Landfill Symposium. CISA publisher, Sardinia (2009)

    Google Scholar 

  28. Peterson, A.A., Lachance, R.P., Tester, J.W.: Kinetic evidence of the Mallard reaction in hydrothermal biomass processing: glucose-glycine interactions in high–temperature high-pressure water. Ind. Eng. Chem. Res. 49, 2107–2117 (2010)

    Article  Google Scholar 

  29. Nurtsen, H.: The Mailard Reaction: chemistry, biochemistry and implications. RSC, Cambridge (2005)

    Google Scholar 

  30. Dwyer, J., Starrenburg, D., Tait, S., Barr, K., Batstone, D.J., Lant, P.: Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Res. 42, 4699–4709 (2008)

    Article  Google Scholar 

  31. Wilson, C.A., Novak, J.T.: Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res. 43, 4489–4498 (2009)

    Article  Google Scholar 

  32. Castello, D., Kruse, A., Flori, L.: Supercritical water gasification of hydrochar. Chem. Eng. Res. Des. 92, 1864–1875 (2014)

    Article  Google Scholar 

  33. Falco, C., Baccile, N., Titirici, M.M.: Morphological and structural difference between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem. 13, 3273–3281 (2011)

    Article  Google Scholar 

  34. Kang, S., Li, X., Fan, J., Chang, J.: Characterisation of hydrochars produced by hydrothermal carbonisation of lignin, cellulose, d-xylose and wood meal. Ind. Eng. Chem. Res. 51, 9023–9031 (2012)

    Article  Google Scholar 

  35. Parshetti, G.K., Hoekman, S.K., Balasubramanian, R.: Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonisation of palm empty fruit bunches. Bioresour. Technol. (2012). doi:10.1016/j.biortech.2012.09.042

    Google Scholar 

  36. Liu, Z., Quek, A., Hoekman, S.K., Balasubramanian, R.: Production of solid biochar fuel from waste biomass by hydrothermal carbonisation. Fuel 103, 943–949 (2013)

    Article  Google Scholar 

  37. Chen, W., Ye, S., Sheen, H.: Hydrothermal carbonisation of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour. Technol. 118, 195–203 (2012)

    Article  Google Scholar 

  38. Demirbas, M.F., Balat, M., Balat, H.: Biowastes to biofuels. Energy. Convers. Manag. 52, 1815–1828 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Bill & Melinda Gates Foundation for its funding to Loughborough University for this project. The views expressed in this paper are those of the authors. Assistance from Dr Julia Zakharova, Mr Philip Boshoff and Mr Geoff Russell was greatly appreciated during the sampling campaign of the raw human biowastes. Thanks also go to Dr Sue Cavill for her help during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwasola O. D. Afolabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afolabi, O.O.D., Sohail, M. & Thomas, C.P.L. Microwave Hydrothermal Carbonization of Human Biowastes. Waste Biomass Valor 6, 147–157 (2015). https://doi.org/10.1007/s12649-014-9333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9333-4

Keywords

Navigation