Skip to main content
Log in

Nonlinear propagation of ion-acoustic waves in self-gravitating dusty plasma consisting of non-isothermal two-temperature electrons

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Nonlinear propagation of ion-acoustic waves in self-gravitating multicomponent dusty plasma consisting of positive ions, non-isothermal two-temperature electrons and negatively charged dust particles with fluctuating charges and drifting ions has been studied using the reductive perturbation method. It has been shown that nonlinear propagation of ion-acoustic waves in gravitating dusty plasma is described by an uncoupled third order partial differential equation which is a modified form of Korteweg–deVries equation, in contraries to the coupled nonlinear equations obtained by earlier authors. Quasi-soliton solution for the ion-acoustic solitary wave has been obtained from this uncoupled nonlinear equation. Effects of non-isothermal two-temperature electrons, gravity, dust charge fluctuation and drift motion of ions on the ion-acoustic solitary waves have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G K Goertz Rev. Geophys. 27 271 (1989)

    Article  ADS  Google Scholar 

  2. D A Mendis and M Rosenberg Ann. Rev. Astron. Astrophys. 32 419 (1994)

    Article  ADS  Google Scholar 

  3. F Verheest Space Sci. Rev. 77 267 (1996)

  4. P K Shukla and A A Mamun Introduction to Dusty Plasma Physics (Bristol: Institute of Physics Publishing) (2002)

    Book  Google Scholar 

  5. S K Maharaj et al Phys. Plasmas 71 345 (2005)

    ADS  Google Scholar 

  6. M R Jana, A Sen and P K Kaw Phys. Rev. E 48 3930 (1993)

    Google Scholar 

  7. N N Rao, P K Shukla and M Y Yu Planet Space Sci. 38 543 (1990)

    Article  ADS  Google Scholar 

  8. K Alam, A Roychowdhury and S N Paul Int. J. Theor. Phys. 38 757 (1999)

    Article  Google Scholar 

  9. K K Mondal, A Roychowdury and S N Paul Phys. Rev. E 65 016404 (2001)

    Google Scholar 

  10. S Burman, S N Paul and A Roychowdury Phys. Plasmas 9 3752 (2002)

    Article  ADS  Google Scholar 

  11. A P Misra, A Roychowdury and S N Paul Pramana J. Phys. 63 579 (2004)

    Google Scholar 

  12. M S A Khan, S Sultana and M Salimullah Int. J. Sci. Res. 2 132 (2013)

  13. Y Nakamura and A Sarma Phys. Plasmas 8 3921 (2001)

    Article  ADS  Google Scholar 

  14. H F Liu et al Adv. Space Res. 51 2368 (2013)

    Article  ADS  Google Scholar 

  15. S S De, B Paul, G Pakira and S N Paul Proceedings of 3rd International Conference on Computers and Devices for communication (CODEC-06), Institute of Radio Physics and Electronics, Calcutta University, Calcutta, December 18–20, p 668 (2006)

  16. O Rahman et al Int. J. Astron. Astrophys. 4 119 (2014)

    Google Scholar 

  17. F Verheest, M A Hellberg and W A Hereman Phys. Rev. E 86 036402 (2012)

    Google Scholar 

  18. E Eslami and R Baraz AIP Adv. 4 027108 (2014)

  19. C R Choi, K W Min and T N Rhee Phys. Plasmas 18 092901 (2011)

    Article  ADS  Google Scholar 

  20. M Shahmonsouri and H Alinezad Phys. Plasmas 20 033704 (2013)

    Article  ADS  Google Scholar 

  21. A P Misra and Y Wang Commun. Nonlinear Sci. Numer. Solut. 22 1360 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. H R Pakzad and K Javidan Chaos Solitons Fractals 42 2904 (2009)

    Article  ADS  Google Scholar 

  23. S Maitra Phys. Plasmas 19 03217 (2012)

    Article  Google Scholar 

  24. S A Elwakil et al Adv. Space Res. 48 1067 (2014)

    Article  ADS  Google Scholar 

  25. X Yang et al Phys. Rev. E 87 063101 (2013)

    Google Scholar 

  26. K Annon Astrophys. Space Sci. doi:10.1007/s10509-013-1739-0 (2014)

  27. A P Misra, K R Chowdhury and A R Chowdhury Phys. Scr. 69 44 (2005)

    Article  ADS  Google Scholar 

  28. A P Misra and A R Chowdhury Eur. Phys. J. D37 105 (2006)

    ADS  Google Scholar 

  29. S Burman and A Roychowdhuty Chaos Solitons Fractals 13 973 (2002)

    Article  ADS  Google Scholar 

  30. G Zhi-Rong et al Chin. Phys. B19 115203 (2010)

    Google Scholar 

  31. S N Paul et al WASET, Proceedings of International Conference ICFPP held at Bali, Indonesia on 26–28 October (2011)

  32. S N Paul et al Czech. J. Phys. 56 1453 (2006)

    MATH  Google Scholar 

  33. S R Mazumdar, S N Paul and K P Das J. Plasma Phys. 64 297 (2000)

    Article  ADS  Google Scholar 

  34. S Ali and P K Shukla Phys. Plasmas 13 022313 (2006)

    Article  ADS  Google Scholar 

  35. M Shahmansouri Pramana J. Phys. 80 295 (2013)

  36. B Ghosh, S N Paul, and S. Banerjee World Acad. Sci. Eng. Technol. Int. J. Math. Comput. Phys. Quantum Eng. 8(6) 970 (2014)

    Google Scholar 

Download references

Acknowledgments

Indrani Paul would like to thank Prof. Basudev Ghosh, Department of Physics, Jadavpur University, for his constant encouragement in preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.N., Chatterjee, A. & Paul, I. Nonlinear propagation of ion-acoustic waves in self-gravitating dusty plasma consisting of non-isothermal two-temperature electrons. Indian J Phys 91, 101–107 (2017). https://doi.org/10.1007/s12648-015-0826-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0826-1

Keywords

PACS Nos.

Navigation