Skip to main content
Log in

Electrical and optical study of ultrasonic-assisted hydrothermal synthesized Ga doped ZnO nanorods for polymer solar cell application

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Ga doped ZnO nanorods with homogeneous morphology grown by ultrasonic-assisted hydrothermal method on ITO substrate. The effect of hydrothermal growth times 30, 60, 90 and 120 min on the characteristics of ZnO nanorods was examined. The samples were analyzed by X-ray diffraction, scanning electron microscopy, UV–Vis spectrometer and conductivity measurement. With the optimization of the growth times (60 min), we employed Ga doped ZnO nanorods with diverse dopant concentration in fabrication of polymer solar cell. By comparing the effect of Ga doped ZnO thin films with various dopant ratio (0, 0.5, 1.0 and 2 %) on the performance of Ga doped ZnO thin films, 0.5 % Ga doped ZnO was found as the most effective doping level among the selected doping concentrations. Also using 0.5 % Ga doped ZnO thin film, Jsc of 7.54 mA/cm2, Voc of 0.541 V, and fill factor of 64.81 % were achieved, which led to power conversion efficiency of 2.64 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E J Park, H Kim, Y Kim, J Yi, K Choi and K Park Toxicology 275 65 (2010)

    Article  Google Scholar 

  2. P Junlabhuta, W Mekprasartb and R Noonurukb Energy Procedia 56 560 (2014)

    Article  Google Scholar 

  3. Y Ning et al. J. Power Sources 195 5806 (2010)

    Article  Google Scholar 

  4. S C Navale and I S Mulla Mater. Sci. Eng. C 29 1317 (2009)

    Article  Google Scholar 

  5. G Manjula, M Nirmala, K Rekha and A Anukaliani Mater. Lett. 65 1797 (2011)

    Article  Google Scholar 

  6. J Wan, L Hui and K Chen Mater. Chem. Phys. 114 30 (2009)

    Article  Google Scholar 

  7. M Law, L E Greene, J C Johnson, R Saykally and P Yang Nat. Mater. 4 455 (2005)

    Article  ADS  Google Scholar 

  8. J X Wang et al. Nanotechnology 17 4995 (2006)

    Article  ADS  Google Scholar 

  9. Q Wan et al. Appl. Phys. Lett. 84 3654 (2004)

    Article  ADS  Google Scholar 

  10. Z Fan, D Wang, P C Chang, W Y Tseng and J G Lu Appl. Phys. Lett. 85 5923 (2004)

    Article  ADS  Google Scholar 

  11. Z Fan, J G Lu Appl. Phys. Lett. 86 123510 (2005)

    Article  ADS  Google Scholar 

  12. T K Gupta J. Am. Ceram. Soc. 73 1817 (1990)

    Article  Google Scholar 

  13. L Gang, Z Rui and Y Yang Nat. Photonics 6 153 (2012)

    Article  ADS  Google Scholar 

  14. A C Mayer, S R Scully, B E Hardin, M W Rowell and M D McGehee Mater. Today 10(11) 28 (2007)

    Article  Google Scholar 

  15. R Service Science. 332 293 (2011)

    Article  ADS  Google Scholar 

  16. L Zhiqiang et al. Sol. Energy Mater. Sol. C 117 34 (2013)

    Article  Google Scholar 

  17. J Ajuria et al. Phys. Chem. Chem. Phys. 13 20871 (2011)

    Article  Google Scholar 

  18. S G Ihn et al. Sol. Energy Mater. Sol. C 95 1610 (2011)

    Article  Google Scholar 

  19. D Li, L Zhao, R Wu, C Ronning and J G Lu Nano Res. 4 1110 (2011)

    Article  Google Scholar 

  20. K P Kim et al. Curr. Appl. Phys. 11 1311 (2011)

    Article  ADS  Google Scholar 

  21. T H Fang, S H Kang Curr. Appl. Phys. 10(4) 1076 (2010)

    Article  ADS  Google Scholar 

  22. T Stubhan et al. Org. Electron. 12 1539 (2011)

    Article  Google Scholar 

  23. M Ahmadi, K Mirabbaszadeh, S Salari and H Fatehy Electron. Mater. Lett. 10(5) 951 (2014)

    Article  ADS  Google Scholar 

  24. S Salari, M Ahmadi and K Mirabbaszadeh Electron. Mater. Lett. 10(1) 13 (2014)

    Article  Google Scholar 

  25. W Tang and D C Cameron Thin Solid Films 238 83 (1994)

    Article  ADS  Google Scholar 

  26. L Gao, Y Zhang, J M Zhang and K W Xu Appl. Surf. Sci. 257 2498 (2011)

    Article  ADS  Google Scholar 

  27. Q B Ma et al. Scripta Mater. 58 21 (2008)

    Article  Google Scholar 

  28. W J Park et al. Appl. Phys. Lett. 93 083508 (2008)

    Article  ADS  Google Scholar 

  29. V Assuncao et al. Thin Solid Films. 442 102 (2003)

    Article  ADS  Google Scholar 

  30. P S Ravindra, K S Vineet, S Y Raghvendra, K S Prashant and C P Avinash Adv. Mater. Lett. 2(4) 313 (2011)

    Article  Google Scholar 

  31. J J Wu and S C Liu Adv. Mater.14 215 (2002)

    Article  Google Scholar 

  32. P K Samanta, S K Patra, A Ghosh and P R Chaudhuri Int. J. NanoSci. Nanotechnol. 1(1–2):81 (2009)

    Google Scholar 

  33. S E Ahn et al. Appl. Phys. Lett. 84 5022 (2004)

    Article  ADS  Google Scholar 

  34. K Mirabbaszadeh, M Ahmadi, M Khosravi, R Mokhtari and S Salari J. Inorg. Organomet. Polym. 23(6) 1219 (2013)

    Article  Google Scholar 

  35. Y Ishikawa, Y Shimizu, T Sasaki and N Koshizaki J. Colloid Interface Sci. 300 612 (2006)

    Article  Google Scholar 

  36. [36] M Ahmadi, K Mirabbaszadeh and M Ketabchi Electron. Mater. Lett. 9(6) 729 (2013)

    Article  ADS  Google Scholar 

  37. K B Sundaram and A Khan Thin Solid Films 295 87 (1997)

    Article  ADS  Google Scholar 

  38. S K Lim, S H Hwang and S Kim Cryst. Res. Technol. 45(7) 771 (2010)

    Article  Google Scholar 

  39. S Y Kuo et al. Microelectron. Reliab. 50 730 (2010)

    Article  Google Scholar 

  40. W Yang et al. Appl. Surf. Sci. 255 5669 (2009)

    Article  ADS  Google Scholar 

  41. P K Samanta, S Basak and P R Chaudhuri Int. J. NanoSci. 1(1, 2):69 (2011)

    Article  Google Scholar 

  42. J H Lee, K H Ko and B O Park J. Cryst. Growth 247 119 (2003)

    Article  ADS  Google Scholar 

  43. R A Asmar, D Zaouk, P Bahouth, J Podleki and A Foucaran Microelectron. Eng. 83 393 (2006)

    Article  Google Scholar 

  44. E Burstein Phys. Rev. Lett. 93(3) 632 (1954)

    ADS  Google Scholar 

  45. T S Moss Proc. Phys. Soc. B. 67(10) 775 (1954)

    Article  ADS  Google Scholar 

  46. J G Lu et al., J. Appl. Phys. 100 073714 (2006)

    Article  ADS  Google Scholar 

  47. A D Trolio, E M Bauer, G Scavia and C Veroli J. Appl. Phys. 105 113109 (2009)

    Article  ADS  Google Scholar 

  48. X Zi Qiang, D Hong, L Yan and C Hang Mater. Sci. Semicond. Proc. 9:132 (2006)

    Article  Google Scholar 

  49. M C Jun, S U Park and J H Koh Nanoscale Res. Lett. 7(1) 639 (2012)

    Article  ADS  Google Scholar 

  50. S Bandyopadhyay, G K Paul, R Roy, S.K Sen and S. Senb Mater. Chem. Phys. 74 83 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M., Rashidi Dafeh, S. Electrical and optical study of ultrasonic-assisted hydrothermal synthesized Ga doped ZnO nanorods for polymer solar cell application. Indian J Phys 90, 895–901 (2016). https://doi.org/10.1007/s12648-015-0819-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0819-0

Keywords

PACS Nos.

Navigation