Skip to main content
Log in

Effect of alkali modifier ion on spectroscopic properties of Cu2+-doped lead zinc phosphate glass system

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A blue colored Cu2+-doped lead zinc phosphate glass in the system 10 Pb3O4–30 ZnO–59.9 P2O5–0.1 CuO was prepared by quenching of the melt and spectral properties of these glasses were studied. Optical absorption and electron paramagnetic resonance spectra of Cu2+ ion in these glasses were measured. Polarization produced by uneven distribution of d-electron density on the inner core of s-electron was studied. The estimated results showed that the g || > g because Cu2+ ions had tetragonally elongated distortion. Optical absorption studies also supported the same property. The variation in crystal field caused the change in bonding nature. The Fourier transform infrared spectra had elucidated the bonding system of the constituent atoms and groups that shed light on the expected structure. Raman spectra were used to get information about the depolymerization of phosphate chains in the glasses with successive replacement of alkali content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J J Attema, C M Fang, L Chiocel, G A de Wijs, A I Lichtenstein and R A de Groot J. Phys. Condens. Matter. 16 S5517 (2004)

    Article  ADS  Google Scholar 

  2. M I Teixeira, G M Ferraz, L V E Caldas Appl. Radiat. Isot. 62 365 (2005)

    Article  Google Scholar 

  3. A Pan and A Ghosh J. Chem. Phys. 112 1503 (2000)

  4. A Ghosh J. Appl.Phys. 65 227 (1989)

    Article  ADS  Google Scholar 

  5. S S Sastry, B R Venkateswara Rao and T Vishwam Indian J. Phys. 89 73 (2015)

  6. S Sen and A Ghosh J. Mater. Res. 15 995 (2000)

    Article  ADS  Google Scholar 

  7. A Pan and A Ghosh J. Mater. Res. 17 1941 (2002)

    Article  ADS  Google Scholar 

  8. J Wong and C Angell Glass Structure by Spectroscopy (New York: Marcel Dekker) (1976)

    Google Scholar 

  9. S Kabi and A Ghosh EPL-Europhys. Lett. 108 36002 (2014)

    Article  ADS  Google Scholar 

  10. S Kabi and A Ghosh Solid State Ionics 262 778 (2014)

    Article  Google Scholar 

  11. A Shaw and A Ghosh EPL-Europhys. Lett. 100 66003 (2012)

    Article  ADS  Google Scholar 

  12. R K Brow J. Non Cryst. Solids 26 1 (2000)

    Article  ADS  Google Scholar 

  13. R Hussin, D Holland and R Dupree J. Non Cryst. Solids 298 32 (2002)

    Article  ADS  Google Scholar 

  14. G Giridhar, S Sreehari Sastry and M Rangacharyulu Phys. B 406 4027 (2011)

    Article  ADS  Google Scholar 

  15. A Masingu, G Piccaluga and G Pinna J. Non Cryst. Solids 122 52 (1990)

    Article  ADS  Google Scholar 

  16. S Hazra and A Ghosh J. Mater. Res. 10 2374 (1995)

  17. B C Sales and L A Boatner Mater. Lett. 2 301 (1984)

    Article  Google Scholar 

  18. B C Sales and L A Boatner J. Non Cryst. Solids 79 33 (1986)

    Article  ADS  Google Scholar 

  19. A Srinivasa Rao et al. Phys. B 404 3717 (2009)

    Article  ADS  Google Scholar 

  20. J E Shelby Introduction to Glass Science and Technology, 2nd edn. (Cambridge: Royal Society of Chemistry) (2005)

    Google Scholar 

  21. R P S Chakaradhar, B Yasoda, J Lakshmana Rao and N O Gopal J. Non Cryst. Solids 352 3864 (2006)

    Article  ADS  Google Scholar 

  22. V Ramesh Kumar, J L Rao and N O Gopal Mater. Res. Bull. 40 1256 (2005)

    Article  Google Scholar 

  23. N Srinivasa Rao et al. Phys. B 404 1785 (2009).

    Article  ADS  Google Scholar 

  24. A Abragam and B Bleaney Electron Paramagnetic Resonance of Transition Metal Ions (Clarendon: Oxford) (1970)

    Google Scholar 

  25. A Hameed, G Ramadevudu, S L Rao, M Shareefuddin and M N Chary New J. Glass Ceram. 2 51 (2012)

    Article  Google Scholar 

  26. B Bleaney, K D Bowers and D J E Ingram Proc. R. Soc. A 228 147 (1955)

    Article  ADS  Google Scholar 

  27. H Imagawa Phys. Status Solidi B 30 469 (1968)

    Article  ADS  Google Scholar 

  28. B Sreedhar, J Lakshmana Rao and S V J Lakshman J. Non Cryst. Solids 124 216 (1990)

    Article  ADS  Google Scholar 

  29. J H Van Vleck Phys. Rev. 41 208 (1932)

    Article  ADS  Google Scholar 

  30. I Siegel and J A Lorenc J. Chem. Phys. 45 2315 (1966)

    Article  ADS  Google Scholar 

  31. G Gridhar, M Rangacharyulu and R V S S N Ravikumar J. Mat. Sci. Technol. 25 531 (2009)

    Google Scholar 

  32. A Klonkowski Phys. Chem. Glasses 24 166 (1983)

    Google Scholar 

  33. D Kivelson and R Neiman J. Chem. Phys. 35 149 (1961)

    Article  ADS  Google Scholar 

  34. H A Kuska, M T Rogers and R E Durllinger J. Phys. Chem. 71 109 (1967)

    Article  Google Scholar 

  35. E Mansour and G El-Damrawi Phys. B 405 2137 (2010)

  36. H Kawazoe, H Hosono and T Kanazawa J. Non Cryst. Solids 33 103 (1979)

    Article  Google Scholar 

  37. M A Hassan and C A Hogarth J. Matter. Sci. 23 2500 (1988)

    Article  ADS  Google Scholar 

  38. V Kamalaker, G Upender, M Prasad and V Chandra Mouli Indian J Pure Appl. Phys. 48 709 (2010)

    Google Scholar 

  39. J A Duffy and M D Ingram J. Inorg. Nucl. Chem. 37 1203 (1975)

    Article  Google Scholar 

  40. G T Stranford, R A Condrate and B C Compilsen J. Mol. Struct. 73 231 (1981)

    Article  ADS  Google Scholar 

  41. R D Husung and R H Doremus J. Mater. Res. 5 2209 (1990)

    Article  ADS  Google Scholar 

  42. L Montagne, G Palavit and G Mairesse Phys. Chem. Glasses 37 206 (1996)

    Google Scholar 

  43. M A El-Ahdal, E M Antar, H H Mahmoud and F M Ezz-Eldin J. Appl. Sci. Res. 7 1434 (2011)

    Google Scholar 

  44. N Vedeanu, O Cozar, I Ardelean and V Ioncu J. Optoelectron. Adv. Mater. 9 844 (2007)

    Google Scholar 

  45. R K Brow, D R Tallant, J J Hudgens, S W Marin and A D Irwin J. Non Cryst. Solids 177 221 (1994)

  46. H S Liu, T S Chin and S W Yung Mat. Chem. Phys. 50 1 (1997)

    Article  ADS  Google Scholar 

  47. M Elisa et al. Optoelectron. Adv. Mater. Rapid Commun. 4 1301 (2010)

    Google Scholar 

  48. G Le Saout, F Fayon, C Bessada, P Simon, A Blin and Y Vaills J. Non Cryst. Solids. 293–295 657 (2001)

    Article  Google Scholar 

  49. H S Liu and T S Chin Phys. Chem. Glasses 38 123 (1997)

    Google Scholar 

  50. G B Rouse Jr, P J Miller and WM Risen J. Non Cryst. Solids 28 193 (1978)

    Article  ADS  Google Scholar 

  51. B N Nelson and G J Exarhos J. Chem. Phys. 71 2739 (1979)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge UGC DRS LEVEL III Program No. F.530/1/DRS/2009 (SAP-I), dated 09-02-2009 and DST FIST Program No. DST/FST/PSI—002/2011dated 20-12-2011, New Delhi, to the Department of Physics, Acharya Nagarjuna University for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sreehari Sastry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreehari Sastry, S., Prasad, M.V.V.K.S., Venkateswara Rao, B.R. et al. Effect of alkali modifier ion on spectroscopic properties of Cu2+-doped lead zinc phosphate glass system. Indian J Phys 89, 1169–1175 (2015). https://doi.org/10.1007/s12648-015-0713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0713-9

Keywords

PACS Nos.

Navigation