Skip to main content
Log in

Structural and photoluminescence properties of red-light emitting YVO4:Eu3+ phosphor synthesized by combustion and solid-state reaction techniques: a comparative study

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, Eu3+-doped YVO4 phosphors were prepared via the solid-state reaction and the combustion method and the role of the synthesis process on the structural and emission properties of YVO4:Eu3+ was investigated. Combustion synthesis yielded tetragonal phase with the space group I41/amd at a relatively low temperature and within short duration. The infrared spectra confirmed the characteristic bands of Y–O and V–O at around 450 and 830 cm−1, while the samples prepared by combustion route exhibited C–O band and O–H–O bending vibrations at 1376 and 1637 cm−1, respectively. The band gap energy of YVO4, prepared by different methods, was found in the range of 3.6–3.73 eV. Upon UV excitation, the Eu3+-activated samples exhibited characteristic red–orange emission lines generated from 5D0 → 7F1,2 transitions of Eu3+ ions, respectively. The red-to-orange emission intensity ratio was found to be around 4.6 for all samples and proved to be competitive with the commercially available red phosphors. However, Y1−x Eu x VO4 phosphors, synthesized by solid-state reaction technique, exhibited elevated Eu3+ solubility and higher emission intensity than the samples prepared by combustion route owing to the larger crystallite size and minor C–O and O–H bonds. The critical concentration of Eu3+ ions for the maximum emission was estimated to be 2.0 and 0.5 mol% for the samples obtained by solid-state reaction and combustion method, respectively. The present phosphors were observed to be effectively excitable via the broad range of UV lights and were proved to be compatible with the UV LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C Shang, X Shang, Y Qu and M Li J. Appl. Phys. 108 094328 (2010)

    Article  ADS  Google Scholar 

  2. A Yoshikawa et al. J. Rare Earths 29 1178 (2011)

    Article  Google Scholar 

  3. Sheetal, V B Taxak and S P Khatkar J. Fluoresc. 22 891 (2012)

    Article  Google Scholar 

  4. A Khanna and P S Dutta J. Solid State Chem. 198 93 (2013)

    Article  ADS  Google Scholar 

  5. K A Koparkar, N S Bajaj and S K Omanwar Indian J. Phys. doi:10.1007/s12648-014-0554-y (2014)

    Google Scholar 

  6. X Ju, X Li, W Li, C Tao and J Yang Mat. Lett. 77 35 (2012)

    Article  Google Scholar 

  7. V Pankratov, A I Popov, L Shirmane, A Kotlov and C Feldmann J. Appl. Phys. 110 053522 (2011)

    Article  ADS  Google Scholar 

  8. Y Zuo, W Ling and Y Wang J. Lumin. 132 61 (2012)

    Article  Google Scholar 

  9. S D Han, S P Khatkar,V B Taxak, G Sharma and D Kumar Mat. Sci. Eng. B 129 126 (2006)

    Article  Google Scholar 

  10. X Y Huang, J X Wang, D C Yu, S Ye, Q Y Zhang and X W Sun J. Appl. Phys. 109 113526 (2011)

    Article  ADS  Google Scholar 

  11. N S Singh, R S Ningthoujam, N Yaiphaba, S Dorendrajit Singh and R K Vatsa J. Appl. Phys. 105 064303 (2009)

    Article  ADS  Google Scholar 

  12. M Saltarelli et al. J. Fluoresc. 22 899 (2012)

    Article  Google Scholar 

  13. K N Shinde, R Singh and S J Dhoble J. Lumin. 146 91(2014)

    Article  Google Scholar 

  14. B K Grandhe et al. Compos. Part B 43 1192 (2012)

    Article  Google Scholar 

  15. Y Liang, K Sun, W Wang, P Chui and X Sun Mat. Lett. 79 125 (2012)

    Article  Google Scholar 

  16. H Zhang et al. Mat. Sci. Eng. B 130 151 (2006)

    Article  Google Scholar 

  17. S Ekambaram and K C Patil J. Alloys Compd. 217 104 (1995)

    Article  Google Scholar 

  18. S Ekambaram, K C Patil and M Maaza J. Alloys Compd. 393 81 (2005)

    Article  Google Scholar 

  19. S Takeshita, T Isobe, T Sawayama and S Niikura J. Lumin. 129 1067 (2009)

    Article  Google Scholar 

  20. S Som, S K Sharma and S P Lochab Lumin. J. Biol. Chem. Lumin. doi:10.1002/bio.2573 (2013)

    Google Scholar 

  21. Q Zhoua, L Zhanga, H Fana, L Wub and Y Lva Sens. Actuator B 144 192 (2010)

    Article  Google Scholar 

  22. R M Silverstein and F X Webster and D Kiemle Spectroscopic Identification of Organic Compounds (New York: Wiley Publishers) (1998)

  23. S Ray, A Banerjee and P Pramanik Mat. Sci. Eng. B 156 10 (2009)

    Article  Google Scholar 

  24. N Shanta Singh et al. J. Appl. Phys. 104 104307 (2008)

    Article  ADS  Google Scholar 

  25. V Bra´zdova, M Vero´nica, G Pirovano and J Sauer Phys. Rev. B 69 165420 (2004)

    Article  ADS  Google Scholar 

  26. M N Luwang, R S Ningthoujam, S K Srivastava and R K Vatsa J. Mater. Chem. 21 5326 (2011)

    Article  Google Scholar 

  27. R Srinivasan, N R Yogamalar, J Elanchezhiyan, R J Joseyphus and A C Bose J. Alloys. Compd. 496 472 (2010)

    Article  Google Scholar 

  28. H Zhang, X Fub, S Niu and Q Xin J. Alloys. Compd. 457 61 (2008)

    Article  Google Scholar 

  29. H Zhang, X Fu, S Niu, G Sun and Q Xin J. Solid State Chem. 177 2649 (2004)

    Article  ADS  Google Scholar 

  30. P P Pal, P K Baitha, N Borgohain and J Manam Indian J. Phys. 88 243 (2014)

    Article  Google Scholar 

  31. P P Pal and J Manam J. Lumin. 145 340 (2014)

    Article  Google Scholar 

  32. J Manam, P Kumari and S Das Appl. Phys. A 104 197 (2011)

    Article  ADS  Google Scholar 

  33. L Tang, W Gui, K Ding, N Chen and G Du J. Alloys Compd. 590 277 (2014)

    Article  Google Scholar 

  34. K J Lethy, D Beena, V P M Pillai and V Ganesan J. Appl. Phy. 104 033515 (2008)

    Article  ADS  Google Scholar 

  35. S Paul, P Chetri and A Choudhury J. Alloys Compd. 583 578 (2014)

    Article  Google Scholar 

  36. D Hreniak et al. J. Lumin. 131 473 (2011)

    Article  Google Scholar 

  37. S Som and S K Sharma J. Phys. D: Appl. Phys. 45 415102 (2012)

    Article  Google Scholar 

  38. S Choi, Y-M Moon and H-K Jung J. Lumin. 130 549 (2011)

    Article  Google Scholar 

  39. A A Reddy et al. RSC Adv. 2 8768 (2012)

    Article  Google Scholar 

  40. L Chen et al. J. Comb. Chem. 12 587 (2010)

    Article  Google Scholar 

  41. D J Jovanovic et al. Optical Mat. 35 1797(2013)

  42. P D Sahare and M Sing Indian J. Phys. 88 621(2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Kumari and Baitha gratefully acknowledge Indian School of Mines, Dhanbad, for providing research fellowship. The authors are also grateful to S. K. Sharma and S. Das for their continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Manam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Baitha, P.K. & Manam, J. Structural and photoluminescence properties of red-light emitting YVO4:Eu3+ phosphor synthesized by combustion and solid-state reaction techniques: a comparative study. Indian J Phys 89, 1297–1306 (2015). https://doi.org/10.1007/s12648-015-0712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0712-x

Keywords

PACS Nos.

Navigation