Skip to main content
Log in

Effect of zinc substitution on molecular dynamics of protoporphyrin-IX

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We report the effects of zinc metal substitution on the molecular dynamics of protoporphyrin-IX in dichloromethane solvent by spectrally resolving the femtosecond photon echo spectrum. We have found that the coherence and population dynamics change due to the presence of Zn metal in the protoporphyrin-IX system. Zinc metal reduces the conformational disorder in the molecular structure of protoporphyrin-IX and in turn increases the planarity of the molecule resulting in better delocalization of π-electrons in the system. This effect decreases the inhomogeneous broadening of the photon echo spectra of Zn-substituted protoporphyrin-IX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B M Cho, C F Carlsson and R Jimenez J. Chem. Phys. 124 144905 (2006)

    Article  ADS  Google Scholar 

  2. S K K Kumar, V Tiwari, T Goswami and D Goswami Chem. Phys. Lett. 476 31 (2009)

    Article  ADS  Google Scholar 

  3. L V Dao, C Lincoln, M Lowe and P Hannaford J. Chem. Phys. 120 8434 (2004)

    Article  ADS  Google Scholar 

  4. S Mukamel Principles of Nonlinear Optical Spectroscopy (eds.) M Lapp, J-I Nishizawa, B B Snavely, H Stark, A C Tam and T Wilson (New York: Oxford University Press) Ch 6, p 299 (1995)

  5. W P de Boeij, M S Pshenichnikov and D A Wiersma Chem. Phys. 233 287 (1998)

    Article  ADS  Google Scholar 

  6. Y R Shen The Principles of Nonlinear Optics (eds) A Brignon and J-P Huignard (New York: Wiley-Interscience) Ch 14, p 242 (1984)

  7. P Hannaford Femtosecond Laser spectroscopy (Boston: Springer) Ch 8, p 197 (2005)

    Book  Google Scholar 

  8. J D Hybl, A A Ferro and D. M. Jonas J. Chem. Phys. 115 6606 (2001)

    Article  ADS  Google Scholar 

  9. S M G Faeder and D M Jonas J. Phys. Chem. A 103 10489 (1999)

    Article  Google Scholar 

  10. J D Hybl, A W Albrecht, S M G Feader and D. M. Jonas Chem. Phys. Lett. 297 307 (1998)

    Article  ADS  Google Scholar 

  11. A W Albrecht, J D Hybl, S M Sarah, S M G Feader and D M Jonas J. Chem. Phys. 111 10934 (1999)

    Article  ADS  Google Scholar 

  12. S Mukamel, A Piryatinski and V Chernyak Acc. Chem. Res. 32 145 (1999)

    Article  Google Scholar 

  13. A Tokmakoff, A S Kwok, R S Urdahl, R S Francis and M D Fayer Chem. Phys. Lett. 234 289 (1995)

    Article  ADS  Google Scholar 

  14. T Joo, Y Jia, J Yu, M J Lang and G R Fleming J. Chem. Phys. 104 6089 (1996)

    Article  ADS  Google Scholar 

  15. W Zinth and W Kaiser Topics in Applied Physics (Heidelberg: Springer-Verlag) Vol. 60 p 235 (1998)

  16. K M Smith Porphyrins and Metalloporphyrins (Amsterdam: Elsevier) Ch 1 p 6 (1975)

    Google Scholar 

  17. M Boulton, M Różanowska and B Różanowski J. Photochem. Photobiol. B: Biol. 64 144 (2001)

    Article  Google Scholar 

  18. E I Sagun, E I Zenkevich, V N Knyukshto, A M Shulga, D A Starukhin and C V Borczyskowski Chem. Phys. 275 211 (2002)

    Article  ADS  Google Scholar 

  19. L R Milgrom The Color of Life (New York: Oxford University Press) Ch 4 p 112 (1997)

    Google Scholar 

  20. X Liu, E K L Yeow, S Velate and R P Steer Phys. Chem. Chem. Phys. 8 1298 (2006)

    Article  Google Scholar 

  21. P Heathcote, P K Fyfe and M R Jones Biochem Sci. 27 79 (2002)

    Article  Google Scholar 

  22. A Ceulemans, W Oldenhof, C Gorller-Warland and L G Vanquickenborne J. Am. Chem. Soc. 108 1155 (1986)

    Article  Google Scholar 

  23. M Filatov, N Harris and S Shaik J. Chem. Soc. Perkin Trans. 2 399 (1999)

    Article  Google Scholar 

  24. T G Spiro and T C Strekas Proc. Nat. Acad. Sci. 69 2622 (1972)

    Article  ADS  Google Scholar 

  25. C Bruckner et al. Chem. Phys. 294 285 (2003)

    Article  ADS  Google Scholar 

  26. G W Canters, J van Egmond, T J Schaafsma and J H van der Waals Mol. Phys. 24 1203 (1972)

    Article  ADS  Google Scholar 

  27. J Bohandy and B F Kim Spectrochim. Acta Part A 35 415 (1979)

    Article  ADS  Google Scholar 

  28. D Dolphin The Porphyrin (New York: Academic) Vol. 3 Ch 1, p 11 (1978)

  29. G W Canters J. Chem. Phys. 74 157 (1981)

    Article  ADS  Google Scholar 

  30. J S Ahn, Y Kanematsu, Y Nishikawa and T Kushida Synth. Met. 71 1735 (1995)

    Article  Google Scholar 

  31. Y Shibata, A Kurita and T Kushida J. Lumin. 6667 13 (1996)

    Google Scholar 

  32. A Marcelli, I J Badovinac, N Orlic, P R Salvic and C Gellini Photochem. Photobiol. Sci. 12 348 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

D.G. thanks the support from the Department of Science and Technology (DST) Swarnajayanti Fellowship, Indian Space Research Organization (ISRO) Space Technology Cell funds, and Ministry of Human Resource Development (Govt. of India) for funding this research. A.K. acknowledges Council of Scientific and Industrial Research (CSIR), India, for graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Goswami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Goswami, D. Effect of zinc substitution on molecular dynamics of protoporphyrin-IX. Indian J Phys 89, 1183–1192 (2015). https://doi.org/10.1007/s12648-015-0689-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0689-5

Keywords

PACS Nos.

Navigation