Skip to main content
Log in

Polaron-induced parametric interactions in semiconductors: influence of band nonparabolicity and carrier heating

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The modified nonlinear wave dynamics due to band nonparabolicity and carrier heating, arising from parametrically interacting electron–longitudinal optical phonons in a polar semiconductor is studied both theoretically and numerically. Expressions for threshold pump required for the onset of polaron-induced parametric interaction and amplification characteristics are explicitly derived. Polaronic effects along with nonparabolicity are found to be additive and result in tremendous increment in the parametric gain. At smaller magnetic field and moderate carrier concentrations, nonlinearity in energy-dependent effective electron mass and collision frequency, affects threshold and amplification characteristics strongly, which can be utilized for the construction of optical switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S Baskoutas, E Paspalakis and A F Terzis J. Phys. Condens. Matter 19 395024 (2007)

    Article  Google Scholar 

  2. C J Zhang and K X Guo Phys. B383 183 (2006)

    Article  ADS  Google Scholar 

  3. X L Yu and S L Ban Eur. Phys. J. B52 483 (2006)

    Article  ADS  Google Scholar 

  4. M L McMillan Phys. Rev. 167 331 (1968)

    Article  ADS  Google Scholar 

  5. X Wu, D Li, W H Sun F Gau, Z J Zang and R W Peng PIERS ONLINE 5 101 (2009)

    Article  Google Scholar 

  6. U Merkt, M Horst and J P Kotthaus Phys. Scr. T13 272 (1986)

    Article  ADS  Google Scholar 

  7. L I Korovin, I G Lang and S T Pavlov JEPT 65 532 (1997)

    Google Scholar 

  8. M S Sodha, A Kumar, V K Tripathi and P K Kaw Opto-electronics 5 509 (1973)

  9. J T Devreese Polarons and Polar Semiconductors (North-Holland: Amsterdam) (1972)

  10. S D Sharma and B A Mason Phys. Rev. B31 1177 (1985)

    Article  ADS  Google Scholar 

  11. S Huant and K Karrai Phys. Rev. B37 6955 (1988)

    Article  ADS  Google Scholar 

  12. M Yamaguchi, T Inaoka and M Hasegawa Phys. Rev. B65 085207 (2002)

    Article  ADS  Google Scholar 

  13. S Ernst, A R Goni, K Syassen and M Cardona Phys. Rev. B53 1287 (1996)

    Article  ADS  Google Scholar 

  14. M P Hasselback and P M Enders Phys. Rev. B57 9674 (1998)

    Article  ADS  Google Scholar 

  15. L Artus, R Cusco, J Ibanez, N Blanco and G Gonzalez-Diaz Phys. Rev. B60 5456 (1999)

    Article  ADS  Google Scholar 

  16. C J Zhang and K X Guo Phys. E39 103(2007)

    Article  MATH  Google Scholar 

  17. K X Guo and CY Chen J. Phys. Condens. Matter 7 6583 (1995)

    Article  ADS  Google Scholar 

  18. F M Yu, H B Chen and L P Zhou Chinese J. Phys. 49 629 (2011)

  19. M Glicksman and M C Steele Phys. Rev. 110 1204 (1958)

    Article  ADS  Google Scholar 

  20. M Glicksman and M C Steele Phys. Rev. Lett. 2 461 (1959)

    Article  ADS  Google Scholar 

  21. A C Prior J. Electron Control 4 165 (1958)

  22. S Guha and S Ghosh Phys. Stat. Sol. (a)41 249 (1977)

  23. G Sharma and S Ghosh J. Appl. Phys. 89 4741 (2001)

    Article  ADS  Google Scholar 

  24. N Nimje, S Dubey and S Ghosh Chin. J. Phys. 49 901 (2011)

    Google Scholar 

  25. N Nimje, S Dubey and S Ghosh Indian J. Phys. 86 749 (2012)

    Article  ADS  Google Scholar 

  26. N Nimje, S Dubey and S Ghosh Indian J. Phys. 84 1567 (2010)

    Article  ADS  Google Scholar 

  27. M Mottaghizadeh and P Eslami Indian J. Phys. 86 71 (2012)

  28. D A Romanov, B R Glavin, V V Mitin and M A Stroscio Phys. B272 427 (1999)

  29. S Dubey and S Ghosh New J. Phys. 11 093030 (2009)

    Article  ADS  Google Scholar 

  30. E M Conwell High field transport in semiconductors (New York : Academic press) p 159 (1969)

  31. J Pozhela Plasma and Current Instabilities in Semiconductors (Oxford : Pergamon) p 4, 26 (1981)

  32. E O Kane J. Phys. Chem. Solids 1 249 (1957)

    Article  ADS  Google Scholar 

  33. H Ehrenreich J. Phys. Chem. Solids 2 131 (1957)

    Article  ADS  Google Scholar 

  34. K Seeger Semiconductor Physics (NewYork : Spinger-Verlag) p 14, 60 (1973)

  35. M S Sodha, A K Ghatak and V K Tripathi Self-Focusing of Laser Beams in Dielectrics, Plasmas and semiconductors (Tata McGraw-Hill: New Delhi) p 55, 60 (1974)

  36. H B Callen Phys. Rev. 76 1394 (1949)

    Article  MATH  ADS  Google Scholar 

  37. R Kaplan, E D Palik, R F Wallis, S Iwasa, E Burstein and Y Sawada Phys. Rev. Lett. 18 159 (1967)

    Article  ADS  Google Scholar 

  38. S J Buchsbaum, A G Chynoweth and W L Feldmann Appl. Phys. Lett. 6 671 (1965)

    Article  Google Scholar 

  39. T Musha, F Lindvall and J Hagglund Appl. Phys. Lett. 8 183 (1966)

    Google Scholar 

  40. G Sharma and S Ghosh Phys. Stat. Sol. (a)2 443 (2001)

Download references

Acknowledgments

Financial assistance from MPCST, Bhopal is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Agrawal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, R., Dubey, S. & Ghosh, S. Polaron-induced parametric interactions in semiconductors: influence of band nonparabolicity and carrier heating. Indian J Phys 89, 1205–1211 (2015). https://doi.org/10.1007/s12648-015-0686-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0686-8

Keywords

PACS Nos.

Navigation