Skip to main content
Log in

Optical, electrochemical and thermal properties of Mn2+ doped CdS nanoparticles

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Mn2+ doped (1–5 and 10 %) CdS nanoparticles have been synthesized by the chemical precipitation method using polyvinylpyrrolidone as a capping agent. The particle size, morphology and optical properties have been studied by X-ray powder diffraction, transmission electron microscopy, UV–Visible and photoluminescence spectroscopy. Powder diffraction data have confirmed that the crystallite size is around 2–5 nm. The band gap of the nanoparticles has been calculated using UV–Visible absorption spectra. An optimum concentration, Mn2+ (3 %) has been selected by optical study. The functional groups of the capping agent have been identified by fourier transform infrared spectroscopy study. The presence of dopant (Mn2+) has been confirmed by electron paramagnetic resonance spectroscopy. Thermal properties of CdS:Mn2+ have been analyzed using thermogravimetric–differential thermal analyser. The electrochemical properties of the undoped and doped samples have been studied by cyclic voltammetry for electrode applications. In addition, magnetic properties of Mn2+ doped CdS have been studied using a vibrating sample magnetometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y Xiong, J Zhang, F Huang, G Ren, W Liu and D Li J. Phys. Chem. C 112 9229 (2008)

    Article  Google Scholar 

  2. D Sreekantha Reddy et al. Mater. Res. Bull. 43 3245 (2008)

  3. R Sathyamoorthy et al. J. Alloys Compd. 493 240 (2010)

    Article  Google Scholar 

  4. F Atay, S Kose, V Bilgin and I Akyuz Mater. Lett. 57 3461 (2003)

    Article  Google Scholar 

  5. P Q Zhao, X L Wu, J Y Fan, P K Chu and G G Siu Scr. Mater. 55 1123 (2006)

    Article  Google Scholar 

  6. P K Khanna and V V V S Subbarao Mater. Lett. 58 2801 (2004)

    Article  Google Scholar 

  7. X C Wu and Y R Tao J. Cryst. Growth 242 309 (2002)

    Article  ADS  Google Scholar 

  8. MA Chamarro et al. J. Cryst. Growth 159 853 (1996)

    Article  ADS  Google Scholar 

  9. L Levy, D Ingert, N Feltin and MP Pileni J. Cryst. Growth 184/185 377 (1998)

  10. G Counio, S Esnouf, T Gacoin and J-P Boilot J. Phys. Chem. 100 20021 (1996)

    Article  Google Scholar 

  11. G Murugadoss J. Lumin. 131 2223 (2011)

    Article  Google Scholar 

  12. N Murase, et al. J. Phys. Chem. B 103 754 (1999)

    Article  Google Scholar 

  13. A A Bol and A Meijerink Phys. Rev. B 58 R15997 (1998)

    Article  ADS  Google Scholar 

  14. B Tripathi, F Singh, DK Avasthi, D Das and YK Vijay Phys. B 400 70 (2007)

    Article  ADS  Google Scholar 

  15. R Lotfi, N Shahtahmasebi and N Tajabor Phys. E 40 2894 (2008)

    Article  Google Scholar 

  16. N Peyghambarian, SW Koch and A Mysyrowicz Introduction to Semiconductor Optics (NJ: Prentice Hall) (1993)

    Google Scholar 

  17. Sh. Liu, F Liu and H Guo Solid State Commun. 115 615 (2000)

    Article  ADS  Google Scholar 

  18. J Nanda, B A Kuruvilla and D D Sarma Phys. Rev. B 59 7473 (1999)

    Article  ADS  Google Scholar 

  19. A S Vorokh and A A Rempel Dokl. Phys. 52 200 (2007)

    Article  ADS  Google Scholar 

  20. M Elango, K Gopalakrishnan, S Vairam and M Thamilselvan J. Alloys Compd. 538 48 (2012)

    Article  Google Scholar 

  21. M Mall and L Kumar J. Lumin. 130 660 (2010)

    Article  Google Scholar 

  22. B D Cullity and S R Stock Elements of X-ray Diffraction, 3rd edn. (NJ: Prentice Hall) (2001)

  23. S Sapra, J Nanda, DD Sarma, F Abed E1-A1 and G Hodes Chem. Commun. 21 2188 (2001)

    Article  Google Scholar 

  24. TP Martin and H Schaber Spectrochim. Acta A 38 655 (1982)

    Article  ADS  Google Scholar 

  25. SW Yao, YX Han, WX Liu, WG Zhang and HZ Wang Mater. Chem. Phys. 101 247 (2007)

    Article  Google Scholar 

  26. LM Qi, H Colfen and M Antonietti Nano Lett. 1 61 (2001)

    Article  ADS  Google Scholar 

  27. P S Chowdhury, P Ghosh and A Patra J. Lumin. 124 327 (2007)

    Article  Google Scholar 

  28. L E Brus J. Chem. Phys. 79 5566 (1983)

    Article  ADS  Google Scholar 

  29. Y Lie, W K Chin, H P Sun and G Wilde Appl. Phys. Lett. 86 103106 (2005)

    Article  ADS  Google Scholar 

  30. A Phuruangrat, T Thongtem and S Thongtem J. Exp. Nanosci. 4 47 (2009)

    Article  Google Scholar 

  31. R Lozada-Morales, O Zelaya-Angel and G Torres-Delgado Appl. Phys. A 73 61 (2001)

    Article  ADS  Google Scholar 

  32. J E B Katari, V Colvin and A P Alivisatos Chem. Phys. 98 4109 (1994)

    Article  Google Scholar 

  33. Y Tanabe and S Sugano J. Phys. Soc. Jpn. 9 753 (1954)

    Article  ADS  Google Scholar 

  34. S Sugano, Y Tanabe and H. Kamimura Multiplets of Transition-Metal Ions in Crystals (New York: Academic Press) (1970)

  35. O B Paul and L P Nigel Chem. Mater. 13 3843 (2001)

    Article  Google Scholar 

  36. AJ Bard, R Parsons and J Jordan (eds) Standard Potentials in Aqueous Solutions (New York: Marcel Dekker) p 262 (1985)

  37. H Cui, Y Xu and Z F Zhang Anal. Chem. 76 4002 (2004)

    Article  Google Scholar 

  38. A Nag, S Sapra, C Nagamani, A Sharma, N Pradhan, S V Bhat and D D Sarma Chem. Mater. 19 3252 (2007)

    Article  Google Scholar 

  39. S Acharya, D D Sarma, RJ Nikhil and N Pradhan J. Phys. Chem. Lett. 1 485 (2010)

    Article  Google Scholar 

  40. B Yang, X Shen, H Zhang, Y Cui and J Zhang J. Phys. Chem. C 117 15829 (2013)

    Article  Google Scholar 

  41. R I Dimitrov, N Moldovanska and I K Bonev Thermochim. Acta 385 41 (2002)

    Article  Google Scholar 

  42. D J Chadi, R M White and W A Harrison Phys. Rev. Lett. 35 1372 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge CECRI, Karaikudi, Tamilnadu, India, for XRD, UV–Visible, PL, TEM, EPR, TG–DTA studies. Anna University, Centre for Nano Science and Technology, for CV study and CISR, Annamalai University, for FT–IR spectra. I would like to gratefully thank Dr.R.Gokul Krishnan, Chairman, Meenakshi Ammal Trust, Chennai, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Anbalagan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muruganandam, S., Anbalagan, G. & Murugadoss, G. Optical, electrochemical and thermal properties of Mn2+ doped CdS nanoparticles. Indian J Phys 89, 835–843 (2015). https://doi.org/10.1007/s12648-015-0650-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0650-7

Keywords

PACS Nos.

Navigation