Skip to main content

Advertisement

Log in

Electrowetting on dielectric and superhydrophobic surface: lattice Boltzmann study

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Electrowetting (EW) effect is defined as changing in the interfacial energy of solid–liquid interface which causes to change in solid–liquid contact angle. In EW on dielectric (EWOD) actuations, the microliter drops are usually placed between two substrates which have some advantages. By modifying the voltages applied to the electrodes, it is possible to manipulate the droplets by setting up surface tension gradients along the plate. In this paper, the free energy based lattice Boltzmann method which has been recently extended by the authors for modeling and simulation of EW phenomenon has been applied to simulate EWOD. Also here we report the results of simulation of EW on superhydrophobic surfaces and pinning problem. The results have been compared with experimental data and show good accuracy of the numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. F Mugele and J C Baret J. Phys. Condens. Matter 17 R705 (2005)

    Article  ADS  Google Scholar 

  2. H J I Verheijen and M W J Prins Langmuir 15 6616 (1999)

    Article  Google Scholar 

  3. R Digilov Langmuir 16 6719 (2000)

    Article  Google Scholar 

  4. O D Velev, B G Prevo and K H Bhatt Nature 426 515 (2003)

    Article  ADS  Google Scholar 

  5. M Vallet, M Vallade and B Berge Eur. Phys. J. B 11 583 (1999)

    ADS  Google Scholar 

  6. T D Blake, A Clarke and E H Stattersfield Langmuir 16 2928 (2000)

    Article  Google Scholar 

  7. A R Wheeler, H Moon, C-J Kim, J A Loo and R L Garrell Anal. Chem 76 4833 (2004)

    Article  Google Scholar 

  8. J Fowler, H Moon and C J Kim Proc. IEEE 15th Annu Int. Conf. MEMS 97 (2002)

  9. S K Cho and C J Kim Proc. IEEE 16th Annu. Int. Conf. MEMS 686 (2003)

  10. S Walker and B Shapiro J. Microelectromech. Sys. 15 986 (2006)

    Article  Google Scholar 

  11. S W Walker, B Shapiro and R H Nochetto Phys. Fluids 21 102103 (2009)

    Article  ADS  Google Scholar 

  12. J Zhang Microfluidics and Nanofluidics 10 1 (2011)

    Article  Google Scholar 

  13. A K Gunstensen, D H Rothman and G Zaleski Phys. Rev. A 43 4320 (1991)

    Article  ADS  Google Scholar 

  14. D Grunau, S Chen, T Lookman and A S Lapedes Phys. Rev. Lett. 71 4198 (1993)

    Article  ADS  Google Scholar 

  15. B M Boghosian and P V Coveney Computer Phys. Communi. 129 46 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. X Shan and H Chen Phys. Rev. E 47 1815 (1993)

    Article  ADS  Google Scholar 

  17. N S Martys and J F Douglas Phys. Rev. E 63 031205 (2001)

    Article  ADS  Google Scholar 

  18. G Hazi, A R Imre, G Mayer and I Farkas Ann. Nuclear Energy 29 1421 (2002)

    Article  Google Scholar 

  19. M R Swift, W R Osborn and J M Yeomans Phys. Rev. Lett. 75 830 (1995)

    Article  ADS  Google Scholar 

  20. M R Swift, E Orlandini, W R Osborn and J M Yeomans Phys. Rev. E 54 5041 (1996)

    Article  ADS  Google Scholar 

  21. D J Holdych, J G Geogiadis and R O Buckius Phys. Fluids 13 817 (2001)

    Article  ADS  Google Scholar 

  22. J Briant, A J Wagner and J M Yeomans Phys. Rev. E 69 031602 (2004)

    Article  ADS  Google Scholar 

  23. H Aminfar and M Mohammadpourfard Comput. Meth. Appl. Mech. Eng. 198 3852 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. H Aminfar and M Mohammadpourfard J. Comput. Fluid Dyn. 24 143 (2010)

    Article  Google Scholar 

  25. H Li and H Fang Eur. Phys. J. Special Top. 171 129 (2009)

    Article  ADS  Google Scholar 

  26. L Clime, D Brassard and T Veres Microfluidics and Nanofluidics 8 599 (2010)

    Article  Google Scholar 

  27. L Clime, D Brassard and T Veres Comput. & Fluids 39 1510 (2010)

    Article  MATH  Google Scholar 

  28. P G de Gennes Rev. Mod. Phys. 57 827 (1985)

    Article  ADS  Google Scholar 

  29. J W Cahn J. Chem. Phys. 66 3667 (1977)

    Article  ADS  Google Scholar 

  30. J Th. G Overbeek Colloids Surf. 51 61 (1990)

    Article  Google Scholar 

  31. H W Lu, K Glasnner, A L Bertozzi and C J Kim J. Fluid Mech. 590 411 (2007)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The work is financially supported by research funds of Islamic Azad University, Tabriz Branch. The authors would like to thank F. Varnik for useful discussions and A. Dupuis for providing us a version of his LB code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Zamzamian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamzamian, K., Mohammadpourfard, M. Electrowetting on dielectric and superhydrophobic surface: lattice Boltzmann study. Indian J Phys 86, 889–899 (2012). https://doi.org/10.1007/s12648-012-0158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0158-3

Keywords

PACS Nos.

Navigation