Skip to main content
Log in

Towards a broadband chirped pulse Fourier transform microwave spectrometer

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This article gives a brief review of microwave spectroscopy and the experimental techniques used for obtaining microwave spectrum of molecules and complexes since 1950s. It presents a brief summary of the pulsed nozzle Fourier transform microwave (PNFTMW) spectrometer, fabricated in our laboratory, and discusses some of the important results obtained using the spectrometer. The most significant among the results from this spectrometer is the direct structural determination of weakly bound complexes involving H2O/H2S. These have challenged the conventional wisdom on hydrogen bonding leading us to propose a modern definition for the same through IUPAC. The limitations of the PNFTMW spectrometer and the need for the new chirped pulse Fourier transform microwave spectrometer are discussed as well. Moreover, preliminary results from our laboratory on generating a 1 µs chirped pulse of 1 GHz bandwidth are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C H Townes and A L Schawlow Microwave Spectroscopy (New York: McGraw Hill) (1955)

    Google Scholar 

  2. W Gordy and R L Cooke Microwave Molecular Spectra (New York: Wiley) (1984)

    Google Scholar 

  3. D Christen, L H Coudert, R D Suenram and F J Lovas J. Mol. Spectrosc. 172 57 (1995)

    Article  ADS  Google Scholar 

  4. D Christen, L H Couder, J A Larsson and D Cremer J. Mol. Spectrosc. 205 185 (2001)

    Article  ADS  Google Scholar 

  5. Th Brupbacher, J Makarewicz and A Bauder J. Chem. Phys. 101 9736 (1994)

    Article  ADS  Google Scholar 

  6. J U Grabow et al. J. Chem. Phys. 102 1181 (1995)

    Article  ADS  Google Scholar 

  7. H A Fry and S G Kukolich J. Chem. Phys. 76 4387 (1982)

    Article  ADS  Google Scholar 

  8. S A Marshall and J Weber Phys. Rev. 105 1502 (1957)

    Article  ADS  Google Scholar 

  9. O Desyatnyk, L Pszczolkowski, S Thorwirth, T M Krygowski and Z Kisiel Phys. Chem. Chem. Phys. 7 1708 (2005)

    Article  Google Scholar 

  10. E Tannenbaum, R J Myers and W D Gwinn J. Chem. Phys. 25 42 (1956)

    Article  ADS  Google Scholar 

  11. J Nakagawa, M Imachi and M Hayashi J. Mol. Struct. 112 201 (1984)

    Article  ADS  Google Scholar 

  12. G G Brown, B C Dian, K O Douglass, S M Geyer and B H Pate J. Mol. Spectrosc. 238 200 (2006)

    Article  ADS  Google Scholar 

  13. R H Hughes and E B Wilson Phys. Rev. 71 562 (1947)

    Article  ADS  Google Scholar 

  14. K B McAfee, R H Hughes and E B Wilson Rev. Sci. Instrum. 20 821 (1949)

    Article  ADS  Google Scholar 

  15. B N Bhattacharya, W Gordy and O Fujii Bull. Am. Phys. Soc. 2 213 (1957)

    Google Scholar 

  16. B N Bhattacharya and W Gordy Phys. Rev. 119 144 (1960)

    Article  ADS  Google Scholar 

  17. R H Dicke Phys. Rev. 93 99 (1954)

    Article  ADS  MATH  Google Scholar 

  18. R H Dicke and R H Romer Rev. Sci. Instrum. 26 915 (1955)

    Article  ADS  Google Scholar 

  19. R H Romer and R H Dicke Phys. Rev. 99 532 (1955)

    Article  ADS  Google Scholar 

  20. J Ekkers and W H Flygare Rev. Sci. Instrum. 47 448 (1976)

    Article  ADS  Google Scholar 

  21. G Bestmann, H Dreizler, E Fliege and W Stahl J. Mol. Struct. 97 215 (1983)

    Article  ADS  Google Scholar 

  22. G Bestmann, H Dreizler, H Mader and U Andresen Z. Naturforsch. 35 392 (1980)

    ADS  Google Scholar 

  23. M Oldani and A Bauder Chem. Phys. Lett. 108 7 (1984)

    Article  ADS  Google Scholar 

  24. M Oldani, T -K Ha and A Bauder Chem. Phys. Lett. 115 317 (1985)

    Article  ADS  Google Scholar 

  25. J S Muenter Atomic and Molecular Beam Methods, vol. II (G. Scoles, D Leine and U Valbusa Eds) (New York: Oxford University Press) p. 15 (1992)

    Google Scholar 

  26. T R Dyke, B J Howard and W Klemperer J. Chem. Phys. 56 2442 (1972)

    Article  ADS  Google Scholar 

  27. T R Dyke and J S Muenter J. Chem. Phys. 60 2929 (1974)

    Article  ADS  Google Scholar 

  28. T J Balle and W H Flygare Rev. Sci. Instrum. 52 33 (1981)

    Article  ADS  Google Scholar 

  29. K C Janda, J C Hemminger, J S Winn, S E Novick, S J Harris and W Klemperer J. Chem. Phys. 63 1419 (1975)

    Article  ADS  Google Scholar 

  30. B F Henson, G V Hartland, V A Venturo and P Felker J. Chem. Phys. 97 2189 (1992)

    Article  ADS  Google Scholar 

  31. E Arunan and H S Gutowsky J. Chem. Phys. 98 4294 (1993)

    Article  ADS  Google Scholar 

  32. E Arunan, A P Tiwari, P K Mandal and P C Mathias Curr. Sci. 82 533 (2002)

    Google Scholar 

  33. R D Suenram, F J Lovas, G T Fraser, J Z Gillies, C W Gillies and M Onida J. Mol. Spectrosc. 137 127 (1989)

    Article  ADS  Google Scholar 

  34. M Kruger and H Dreizler Z. Naturforsch. 45a 724 (1990)

    Google Scholar 

  35. J U Grabow and W Stahl Z. Naturforsch. 45a 1043 (1990)

    Google Scholar 

  36. V Storm, H Dreizler, D Consalvo, J U Grabow and I Merke Rev. Sci. Instrum. 67 2714 (1996)

    Article  ADS  Google Scholar 

  37. I Merke, W Stahl and H Dreizler Z. Naturforsch. 49a 490 (1994)

    Google Scholar 

  38. K C Etchison, C T Dewberry, K E Kerr, D W Shoup and S A Cooke J. Mol. Spectrosc. 242 39 (2007)

    Article  ADS  Google Scholar 

  39. G S Grubbs II, C T Dewberry, K C Etchison, M M Seraffin, S A Peeples and S A Cooke J. Mol. Spectrosc. 251 378 (2008)

    Article  ADS  Google Scholar 

  40. J A Shea and E J Campbell J. Chem. Phys. 81 5326 (1984)

    Article  ADS  Google Scholar 

  41. T Emilsson, T D Klots, R S Ruoff and H S Gutowsky J. Chem. Phys. 93 6971 (1990)

    Article  ADS  Google Scholar 

  42. P Thaddeus and M C McCarthy Spectrochim. Acta A Mol. Biomol. Spectrosc. 57 757 (2001)

    Article  ADS  Google Scholar 

  43. V D Gordon, M C McCarthy, A J Apponi and P Thaddeus Astrophys. J. Supp. 138 297 (2002)

    Article  ADS  Google Scholar 

  44. Y Sumiyoshi, Y Endo and Y Ohshima J. Mol. Spectrosc. 222 22 (2003)

    Article  ADS  Google Scholar 

  45. K Seki, Y Sumiyoshi and Y Endo J. Chem. Phys. 117 9750 (2002)

    Article  ADS  Google Scholar 

  46. R D Suenram and F J Lovas Astrophys. J. Lett. 342 L103 (1989)

    Article  ADS  Google Scholar 

  47. S G Batten, A G Ward and A C Legon J. Mol. Struct. 780781 300 (2006)

    Article  Google Scholar 

  48. S Antolinez, A Lesarri, S Mata, S Blanco, J C Lopez and J L Alonso J. Mol. Struct. 612 125 (2002)

    Article  ADS  Google Scholar 

  49. S A Cooke and M C L Gerry J. Mol. Spectrosc. 234 195 (2005)

    Article  ADS  Google Scholar 

  50. J L Aonso, E J Cocinero, A Lesarri, S E Sanz and J C Lopez Angew. Chem. Int. Ed. 45 3471 (2006)

    Article  Google Scholar 

  51. E Arunan, P K Mandal, M Goswami and B Raghavendra Proc. Ind. Natl. Sci. Acad. 71A 377 (2005)

    Google Scholar 

  52. M Goswami, P K Mandal, D H Ramadoss and E Arunan Chem. Phys. Lett. 393 22 (2004)

    Article  ADS  Google Scholar 

  53. P K Mandal, D J Ramdass and E Arunan Phys. Chem. Chem. Phys. 7 2740 (2005)

    Article  Google Scholar 

  54. P K Mandal, M Goswami and E Arunan J. Indian Inst. Sci. 85 353 (2005)

    Google Scholar 

  55. P K Mandal PhD Thesis (Indian Institute of Science: Bangalore) (2005)

  56. M Goswami and E Arunan Phys. Chem. Chem. Phys. 13 14153 (2011)

    Article  Google Scholar 

  57. M Goswami and E Arunan J. Mol. Spectrosc. 268 147 (2011)

    Article  ADS  Google Scholar 

  58. P Aiswaryalakshmi Ph.D Thesis (Indian Institute of Science, Bangalore) (2012)

  59. K I Peterson and W Klemperer J. Chem. Phys. 85 725 (1986)

    Article  ADS  Google Scholar 

  60. M Goswami and E Arunan Phys. Chem. Chem. Phys. 11 8974 (2009)

    Article  Google Scholar 

  61. P K Mandal and E Arunan J. Chem. Phys. 114 3880 (2001)

    Article  ADS  Google Scholar 

  62. B Raghavendra, P K Mandal and E. Arunan Phys. Chem. Chem. Phys. 8 5276 (2006)

    Article  Google Scholar 

  63. E Arunan et al. Pure Appl. Chem. 83 1637 (2011)

    Article  Google Scholar 

  64. D Mani, P Aishwaryalakshmi and E Arunan Asian J. Spectrosc. (Special Issue) 31 (2010)

  65. E Arunan, S Dev and P K Mandal Appl. Spectrosc. Rev. 39 131 (2004)

    Article  ADS  Google Scholar 

  66. J Razec and P Hobza J. Chem. Theory Comput. 4 1835 (2008)

    Article  Google Scholar 

  67. G G Brown, B C. Dian, K O Douglass, S M Geyer, S T Shipman and B H Pate Rev. Sci. Instrum. 79 053103 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

EA acknowledges funding from Department of Science and Technology, Council for Scientific and Industrial Research, Indian Institute of Science, International Union of Pure and Applied Chemistry and the Indo–French Centre for Promotion of Advanced Research. DM acknowledges CSIR for the Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Arunan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mani, D., Bhat, V.T., Vinoy, K.J. et al. Towards a broadband chirped pulse Fourier transform microwave spectrometer. Indian J Phys 86, 225–235 (2012). https://doi.org/10.1007/s12648-012-0043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0043-0

Keywords

PACS Nos.

Navigation