Skip to main content
Log in

Effective thermal conductivity and coefficient of linear thermal expansion of high-density polyethylene — fly ash composites

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

As the disposal of fly ash (FA) poses a serious problem in terms of land use and potential environmental pollution, there exists a global interest for its utilization. Utilization of fly ash as filler material in polymer composites is considered important from both economic and commercial point of view. In this communication, the effective thermal conductivity and coefficient of thermal expansion (CTE) of composites synthesized with fly ash filler embedded in high-density polyethylene (HDPE) matrix is investigated. Incorporation of fly ash in HDPE enhances both the thermal stability and the effective thermal conductivity of the composites. CTE, however, significantly decreases as the FA content increases in HDPE. Effective thermal conductivity for HDPE containing 70-volume fraction (%) fly ash becomes almost twice than that for unfilled HDPE. Results on both the effective thermal conductivity and CTE of HDPE/FA composites have been discussed in light of various theoretical models. Our analysis indicates formation of conductive channels of FA particulates in HDPE, which causes rapid enhancement in the effective thermal conductivity of the HDPE/FA composites. We also confirm the importance of the role of the interphase volume and the strength of the polymer — filler interactions to successfully predict the CTE of HDPE/FA composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G J McCarthy, F P Glasser and D M Roy Mater. Res. Soc. Symp Proc — Mater Research Society, Pittsburgh, Pa, 65 (1985)

  2. R Mohapatra and J Rajagopala Rao J Chem. Tech. Biotechnology 76 9 (2001).

    Article  Google Scholar 

  3. Y M Fan, S H Yin, Z Y Wen and J Y Zhong Cem. Concr. Res. 29 467 (1999)

    Article  Google Scholar 

  4. B Indraratana, P Nutalaya, K S Koo and N Kuganenthira Can Geotech. J 28 542 (1991)

    Article  Google Scholar 

  5. S Stryczek and J Postwa Gornictwo 13 5 (1989)

    Google Scholar 

  6. P Padmakaran, C B Raju and A S Rao Clay. Res. 13 30 (1994)

    Google Scholar 

  7. www.teriin.org/energy/flyash.htm. (2005)

  8. N Chand J. Mater. Sci. Lett. 7 36 (1988)

    Article  MathSciNet  Google Scholar 

  9. N Chand, T K Dan, S Verma and P K Rohatgi J. Mater. Sci. Lett. 6 733 (1987)

    Article  Google Scholar 

  10. U Atikler, D Basalp and F Tihminlioglu J. Poly. Sci. 102 4460 (2006)

    Google Scholar 

  11. X Colom, F Carrasc, P Pages and J. Canavate Comp. Sci. Tech. 63 161 (2003)

    Article  Google Scholar 

  12. A R R Menon, T A Sonia and J D Sudha J. Appl. Poly. Sci. 102 4801 (2006)

    Article  Google Scholar 

  13. S A R Hashmi, P Sharma and N Chand J. Appl. Poly. Sci. 107 2196 (2008)

    Article  Google Scholar 

  14. W Zhou, S Qi, H Li and S Shao Thermo Chimica Acta 452 36 (2007)

    Article  Google Scholar 

  15. T Chaowasakoo and N Sombatsompo Comp. Sci. Tech. 67 2282 (2007)

    Article  Google Scholar 

  16. D Kulutas and I H Tavman J. Thermoplastic Compo Materials 19 441 (2006)

    Article  Google Scholar 

  17. Y P Mammya, V V Davydenko, P Pissis and E V Lebedev European Pol. J. 38 1887 (2002)

    Article  Google Scholar 

  18. I H Tavman J. Appl. Pol. Sci. 62 2161 (1996)

    Article  Google Scholar 

  19. S Mishra, S H Sonawane, N Badgujar, K Gaurav and D Patil J. Appl. Pol. Sci. 96 6 (2005)

    Article  Google Scholar 

  20. Kishore, S M Kulkarni, D Sunil and S Sharathchandra Poly. Int. 51 1378 (2002)

    Article  Google Scholar 

  21. S Bose and P A Mahanwar J Minerals Materials Characterization Engineering 3 65 (2004)

    Google Scholar 

  22. S C Raghavendra, S Khasim, M Revanasiddappa, M V M Ambika Prasad and A B Kulkarni Bull. Mat. Sci. 26 273 (2003)

    Article  Google Scholar 

  23. R N Sener, Y Li, D J White and P R Lee Resour. Conserv. Recycl. 24 87 (1998)

    Article  Google Scholar 

  24. X Huang, J Y Hwang and J M Gills J. Miner. Mater. Character. Eng. 2 11 (2003)

    Google Scholar 

  25. C Alkan, M Arslan, M Cici, M Kaya and M Aksoy Resour. Conserv. Recycl. 13 147 (1995)

    Article  Google Scholar 

  26. X G Chen, J D Guo, B Zheng, Y Li, S Y Fu and G H He Compos. Sc. Tech. 67 3006 (2007)

    Article  Google Scholar 

  27. C P Wong and R S Bollamampally J. Appl. Poly. Sc. 74 3396 (1999)

    Article  Google Scholar 

  28. S Yu, P Hing and X Hu J. Phys D: Appl. Phys. 33 1606 (2000)

    Article  ADS  Google Scholar 

  29. I H Tavman Powder Technology 91 63 (1997)

    Article  Google Scholar 

  30. D Kumlutas, I H Tavman and M T Coban Comp. Sci. Technol. 63 113 (2003)

    Article  Google Scholar 

  31. N M Sofian, M Rusu, R Neagu and E Neagu J. Thermoplastic Compos. Materials 14 20 (2001)

    Article  Google Scholar 

  32. R J Kuriber and M K Alam Expt. Heat Transfer 15 19 (2002)

    Article  ADS  Google Scholar 

  33. A Loachachi, M Cochez, M Ferriol, J M Lopez-Cuesta and E Leroy Mat. Letts. 59 36 (2005)

    Article  Google Scholar 

  34. R K Goyal, A N Tiwari, U P Mulik and Y S Negi Comp. Sci. Technol. 17 1802 (2007)

    Article  Google Scholar 

  35. H S Carslaw and J C Jaeger Conduction of Heat in Solids (2nd ed), (Cambridge University Press) (1959)

  36. H J Ott Plastic and Rubber Processing and Application 1 9 (1981)

    Google Scholar 

  37. R C Progelhof, J L Throne and R R Ruetsch Polymer Engg. Sci. 16 615 (1976)

    Article  Google Scholar 

  38. J C Maxwell A Treatise on Electricity and Magnetism. (3rd ed.) (New York: Dover) (1954)

    MATH  Google Scholar 

  39. R E Meredith and C W Tobias Advances in electrochemistry and electrochemical engineering. (New York: Willey (Interscience publishers)) 2 15 (1962)

    Google Scholar 

  40. H W Russell J. Am. Ceram. Soc. 18 1 (1935)

    Article  Google Scholar 

  41. L E Nielsen Ind. Eng. Chem. Fundam 13 17 (1974)

    Article  Google Scholar 

  42. S C Cheng and R L Vachon Int. J. Heat Mass Trans. 11 537 (1990)

    Google Scholar 

  43. Y Agari and T Uno J. Appl. Polym. Sci. 32 5705 (1986)

    Article  Google Scholar 

  44. W Zhou, S I, Q An, H Zhao and N Liu Mat. Res. Bull 42 1663 (2007)

    Google Scholar 

  45. C-M Ye, B-Q Shentu and Z-X Weng J. Appl. Poly Sc. 101 3806 (2006)

    Article  Google Scholar 

  46. E-S Lee, S-M Lee, D J Shanefield and W R Cannon J. Am. Ceramic Soc. 91 1169 (2008)

    Article  Google Scholar 

  47. X Lu and G Xu J. Appl. Poly. Sc. 65 2733 (1997)

    Article  Google Scholar 

  48. M Orrhede, R Tolani and K Salama Res. Nondestr. Eval. 8 23 (1996)

    Article  Google Scholar 

  49. H Kerner Proc. Phys. Soc. B 69 808 (1956)

    ADS  Google Scholar 

  50. K Balch, T J Fitzgerald, V J Michaud, A Mortensen, Y L Shen, S Suresh Metall. Mater. Trans. A27 3700 (1996)

    Article  Google Scholar 

  51. R A Schapery J. Compos. Mater. 2 380 (1968)

    Article  Google Scholar 

  52. Z Hashim and S Shtrikman J. Mech. Phys. Solids 11 127 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  53. H T Vo, M Todd, F G Shi, A A Shapiro and M Edwards Microelectronics J. 32 331 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Dey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baglari, S., Kole, M. & Dey, T.K. Effective thermal conductivity and coefficient of linear thermal expansion of high-density polyethylene — fly ash composites. Indian J Phys 85, 559–573 (2011). https://doi.org/10.1007/s12648-011-0059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-011-0059-x

Keywords

Navigation