Skip to main content
Log in

Design and Construction of a Helical Resonator for Delivering Radio Frequency to an Ion Trap

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Supplying high voltage radio frequency (RF) is a critical part of ion trapping system due to impedance mismatching between RF source and the ion trap. A helical resonator has been constructed in order to deliver narrow bandwidth and high voltage RF to the ion trap for stable confinement of ions. The performances of the helical resonator have been studied for different capacitive load of the ion trap. Both the resonant frequency and quality factor of the resonator show strong dependence on external capacitive loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. I. Ciracand and P. Zoller, Quantum Computations with Cold Trapped Ions, Phys. Rev. Lett., 74 (1995) 4091-4094.

    Article  ADS  Google Scholar 

  2. D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King and D. M. Meekhof, Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions, J. Res. Natl. Inst. Stand. Technol., 103 (1998) 259-328.

    Article  MATH  Google Scholar 

  3. H. Haeffner, C. F. Roos and R. Blatt, Quantum Computing with Trapped Ions, Phys. Rep., 469 (2008) 155-203.

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Pons, V. Ahufinger, C. Wunderlich, A. Sanpera, S. Braungardt, A. Sen(De), U. Sen and M. Lewenstein, Trapped Ion Chain as a Neural Network: Error Resistant Quantum Computation, Phys. Rev. Lett., 98(2007) 023003.

    Article  ADS  Google Scholar 

  5. A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras and T. Schaetz, Simulating A Quantum Magnet with Trapped Ions, Nature Phys., 4 (2008) 757-761.

    Article  ADS  Google Scholar 

  6. M. Johanning, A. F. Varon and C. Wunderlich, Quantum Simulations with Cold Trapped Ions, J. Phys. B, 42 (2009) 154009.

    Article  ADS  Google Scholar 

  7. R. J. Clark, T. Lin, K. R. Brown and I. L. Chuang, A Two-Dimensional Lattice Ion Trap for Quantum Simulation, J. Appl. Phys., 105 (2009) 013114.

    Article  ADS  Google Scholar 

  8. K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. Freericks, G.-D. Lin, L. Duan and C. Monroe, Quantum Simulation of Frustrated Ising Spins with Trapped Ions, Nature, 465 (2010) 590-593.

    Article  ADS  Google Scholar 

  9. Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist and L. Hollberg, Absolute Frequency Measurements of the Hg+ and Ca Optical Clock Transitions with a Femtosecond Laser, Phys. Rev. Lett., 86 (2001) 4996-4999.

    Article  ADS  Google Scholar 

  10. S. A. Webster, P. Taylor, M. Roberts, G. P. Barwood and P. Gill, Kilohertz-Resolution Spectroscopy of the 2S1/22F7/2 Electric Octupole Transition in a Single 171Yb+ Ion, Phys. Rev. A, 65 (2002) 052501.

    Article  ADS  Google Scholar 

  11. C. Tamm, S. Weyers, B. Lipphardt and E. Peik, Stray-Field-Induced Quadrupole Shift and Absolute Frequency of the 688-THz 171Yb+ Single-Ion Optical Frequency Standard, Phys. Rev. A, 80 (2009) 043403.

    Article  ADS  Google Scholar 

  12. M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hansel, C. F. Roos, R. Blatt, M. Abgrall, G. Santarelli, G. D. Rovera and Ph. Laurent, Absolute Frequency Measurement of the 40Ca+ 4 s 2S1/2–3d 2D5/2 Clock Transition, Phys. Rev. Lett., 102 (2009) 023002.

    Article  ADS  Google Scholar 

  13. G. G. Dolnikowski, M. J. Kristo, C.G. Enke and J.T. Watson, Ion-Trapping Technique for Ion Molecule Reaction Studies in the Center Quadrupole of a Triple Quadrupole Mass Spectrometer, Int. J. Mass Spec. Ion Proc., 82 (1988) 1.

    Article  ADS  Google Scholar 

  14. M. W. Senko, C. L. Hendrickson, M. R. Emmett, S. D. H. Shi, and A. G. Marshall, External Accumulation of Ions for Enhanced Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, J. Am. Soc. Mass Spec., 8 (1997) 970-976.

    Article  Google Scholar 

  15. K. S. Lowery, R. H. Griffey, G. H. Kruppa, J. P. Speir, and S. A. Hofstadler, Multipole Storage Assisted Dissociation, A Novel In-Source Dissociation Technique for Electrospray Generated Ions, Rapid Comm. Mass Spec. 12 (1998) 1957-1961.

  16. W. Paul, O. Osberghaus and E. Fischer. Forschungsbe. Wirtsch.-Verkehrminist. Nordrhein-Westfalen, 1958, 415.

  17. F. G. Major, V. N. Gheorghe and G. Werth, Charged Particle Traps, Springer Series on Atomic, Optical and Plasma Physics, (2010).

    Google Scholar 

  18. M. Roberts, Spectroscopy of a Single Ytterbium Ion. Ph.D. Thesis, Imperial College, University of London, and NationalPhysical Laboratory, Teddington, January (1997).

  19. D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano and D. J. Wineland, Minimization of Ion Micro Motion in a Paul Trap, J. Appl. Phys. 83 (1998) 5025.

  20. P. K. Ghosh, Ion Traps. Clarendon Press, Oxford, (1995).

    Google Scholar 

  21. K. Pant, P. Arora, S. Yadav and A. Sen Gupta, Generation of Quadrupole Magnetic Field for Trapping Atoms in Cs Fountain Being Developed at NPL India. MAPAN-J. Metrol. Soc India, 26 (2011) 285–294.

  22. A. Agarwal and A. Sen Gupta, Frequency and Intensity Control of Lasers to Cool and Control Caesium Atoms. MAPAN-J. Metrol. Soc India, 27 (2012) 169–173.

  23. P. Arora, S.B. Purnapatra, A. Acharya, R. Kumar and A. SenGupta, Measurement of Temperature of Atomic Cloud Using Time of-Flight Technique. MAPAN-J. Metrol. Soc India, 27 (2012) 31–39.

    Google Scholar 

  24. S. De, N. Batra, S. Chakraborty, S. Panja and A. Sen Gupta, Design of an Ion Trap for Trapping Single 171Yb+, Curr. Sci., 106 (2014) 1348.

    Google Scholar 

  25. A. Rastogi, N. Batra, A. Roy, J. Thangjam, V. P. S. Kalsi, S. Panja and S. De, Design of the Ion Trap and Vacuum System for 171Yb-Ion Optical Frequency Standard, MAPAN-J. Metrol. Soc India, 30 (2015) 169.

    Google Scholar 

  26. M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano and D. J. Wineland, Ionic Crystals in a Linear Paul Trap, Phys. Rev. A., 45 (1992) 6493.

    Article  ADS  Google Scholar 

  27. J. D. Siverns, L. R. Simkins, S. Weidt, and W. K. Hensinger, On the Application of Radio Frequency Voltages to Ion Traps Via Helical Resonators, Appl. Phys. B, 107 (2012) 921-934.

    Article  ADS  Google Scholar 

  28. W. W. Macalpine and R. O. Schildknecht, Coaxial. Resonators with Helical Inner Conductor, Proc. IRE 47 (1959) 2099.

    Article  Google Scholar 

  29. T. Nishikawa, S. Tamura, Y. Ishikawa, and H. Matsumoto, Coaxial Resonator, US Patent- US 4398164 A, (1983).

  30. A.I. Zverev and H.J. Blinchikoff, Realization of a Filter with Helical Components, IEEE Trans. Component Parts, 8 (1961) 99.

    Article  Google Scholar 

  31. S. Panja, S. De, S. Yadav and A. Sen Gupta, Measuring Capacitance and Inductance of a Helical Resonator and Improving Its Quality Factor by Mutual Inductance Alteration, Rev. Sci. Instrm. 86 (2015) 056104.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Panja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batra, N., Panja, S., De, S. et al. Design and Construction of a Helical Resonator for Delivering Radio Frequency to an Ion Trap. MAPAN 32, 193–198 (2017). https://doi.org/10.1007/s12647-017-0209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-017-0209-5

Keywords

Navigation