Skip to main content
Log in

A Broadband Microwave Metamaterial Absorber with Octave Bandwidth

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

In this paper, a broadband metamaterial absorber has been presented for practical applications. The unit cell of the proposed structure comprises metallic patch of single circular split-ring imprinted on top surface of a metal-backed dielectric substrate. The geometrical dimensions of the structure have been optimized in such a way that the structure exhibits broadband absorptivity response of 9.12 GHz from 6.70 to 15.82 GHz with more than 90 % absorptivity. Three distinct absorption peaks are observed at 7.16, 10.74 and 14.96 GHz. The absorption phenomena at these three frequencies have been analyzed and the roles of several geometrical parameters involved in the design are investigated. The proposed structure has been studied under oblique incidence, both for TE and TM polarizations where it shows wideband absorption characteristics up to 30° incident angle for TE polarization and 45° incident angle for TM polarization. The proposed structure is very thin (~λ/8.4 with respect to the centre frequency of absorption bandwidth) compared to the commercially available microwave absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., 84 (2000) 4184–4187.

    Article  ADS  Google Scholar 

  2. C. Caloz, T. Itoh, and A. Rennings, CRLH metamaterial leaky-wave and resonant antennas, IEEE Antennas Propag. Mag., 50 (2008) 25–39.

    Article  ADS  Google Scholar 

  3. A. Erentok, and R. W. Ziolkowski, Metamaterial-inspired efficient electrically small antennas, IEEE Trans. Antennas Propag., 56 (2008) 691–707.

    Article  ADS  Google Scholar 

  4. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, Full wave simulations of electromagnetic cloaking structures, Phys. Rev. E, 74 (2006) 036621.

    Article  ADS  Google Scholar 

  5. H. Suthar, D. Sarkar, K. Saurav, and K. V. Srivastava, Gain enhancement of microstrip patch antenna using near-zero index metamaterial lens, 2015 twenty first national conference on communication, pp. 1–6, India, 27 February–1 March, 2015.

  6. S. Li, T. Cao, T. Liu, and H. Yang, Double-layer perfect metamaterial absorber and its application for RCS reduction of antenna, Radioengineering, 23 (2014) 222–228.

  7. R. Hayashi, R. Kanaura, S. Yagitani, T. Imachi, M. Ozaki, Y. Yoshimura, and H. Sugiura, Radio-frequency power distribution measurement system using thin metamaterial absorber, 2016 international workshop on antenna technology (IWAT), pp. 157–160, Florida, USA, 29 February–2 March 2016.

  8. P. Maagt, R. Gonzalo, Y. C. Vardaxoglou, and J. -M. Baracco, Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications, IEEE Trans. Antennas Propag., 51 (2003) 2667–2677.

    Article  ADS  Google Scholar 

  9. N. Pohl, and M. Gerding, A dielectric lens-based antenna concept for high precision industrial radar measurements at 24 GHz, 2012 Ninth European Radar Conference (EuRAD), pp. 405–408, 31 October–2 November, 2012, Amsterdam, Netherlands.

  10. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, Ultrathin multiband gigahertz metamaterial absorbers, J. Appl. Phys., 110 (2011) 014909.

    Article  ADS  Google Scholar 

  11. H. Tao, N. Landy, C. M. Bingham, X. Zhang, R. D. Averit, and W. J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization, Optics Express, 16 (2008) 7181–7188.

    Article  ADS  Google Scholar 

  12. G. Dayal, and S. A. Ramakrishna, Design of highly absorbing metamaterials for infrared frequencies, Optics Express, 20 (2012) 17503–17508.

    Article  ADS  Google Scholar 

  13. S. Bhattacharyya, H. Baradiya, and K. V. Srivastava, An ultra thin metamaterial absorber using electric field driven LC resonator with meander lines, 2012 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, pp. 1–2, 8–13 July, 2012.

  14. S. Bhattacharyya, S. Ghosh, H. Baradiya, and K. V. Srivastava, Study on ultra-thin dual frequency metamaterial absorber with retrieval of electromagnetic parameters, 2014 Twentieth National Conference on Communication, pp. 1–6, 28 February–2 March, 2014, India.

  15. S. Bhattacharyya, and K. V. Srivastava, An ultra thin electric field driven LC resonator structure as metamaterial absorbers for dual band applications, 2013 URSI International Symposium on Electromagnetic Theory (EMTS), pp. 722–725, 20–24 May, 2013.

  16. S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, Bandwidth enhanced metamaterial absorber using electric field driven LC Resonator for airborne radar applications, Microw. Opt. Technol. Lett., 55 (2013) 2131–2137.

    Article  Google Scholar 

  17. S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, Bandwidth-enhancement of an ultra-thin polarization insensitive metamaterial absorber, Microw. Opt. Technol. Lett., 56 (2014) 350–355.

    Article  Google Scholar 

  18. S. Bhattacharyya, and K. V. Srivastava, Triple band polarization-independent ultra-thin metamaterial absorber using ELC resonator, J. Appl. Phys., 115 (2014) 064508.

    Article  ADS  Google Scholar 

  19. S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band, J. Appl. Phys., 114 (2013) 094514.

    Article  ADS  Google Scholar 

  20. S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, Bandwidth-enhanced polarization insensitive microwave metamaterial absorber and its equivalent circuit model, J. Appl. Phys., 115 (2014) 104503.

    Article  ADS  Google Scholar 

  21. J. Sun, L. Liu, G. Dong, and L. Zhou, An extremely broadband metamaterial absorber based on destructive interference, Optics Express, 19 (2011) 21155–21162.

    Article  ADS  Google Scholar 

  22. S. Bhattacharyya, and K. V. Srivastava, Dual layer polarization insensitive dual band metamaterial absorber with enhanced bandwidths, 2014 IEEE Asia Pacific Microwave Conference (APMC), pp. 816–818, 4–7 November, 2014.

  23. S. Bhattacharyya, S. Ghosh, D. Chaurasiya, and K. V. Srivastava, Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber, Springer Appl. Phys. A, 118 (2015) 207–215.

    Article  ADS  Google Scholar 

  24. H. Xiong, J. S. Hong, C. M. Luo, and L. -L. Hong, An ultrathin and broadband metamaterial absorber using multi-layer structures, J. Appl. Phys., 114 (2013) 064109.

    Article  ADS  Google Scholar 

  25. A. Noor, and Z. Hu, Metamaterial dual polarized resistive Hilbert curve array radar absorber, IET Microw. Antennas Propag., 4 (2010) 667–673.

    Article  Google Scholar 

  26. F. Costa, and A. Monorchio, Multiband electromagnetic wave absorber based on reactive impedance ground planes, IET Microw. Antennas Propag., 4 (2010) 1720–1727.

    Article  Google Scholar 

  27. J. Yang, and Z. Shen, A thin and broadband absorber using double-square loops, IEEE Antennas Wirel. Propag. Lett., 6 (2007) 388–391.

    Article  ADS  Google Scholar 

  28. S. Li, J. Guo, X. Cao, W. Li, Z. Zhang, and D. Zhang, Wideband, thin, and polarization-insesnsitive perfect absorber based on the double octagonal rings metamaterials and lumped resistances, J. Appl. Phys., 116 (2014) 043710.

    Article  ADS  Google Scholar 

  29. W. Yuan, and Y. Cheng, Low-frequency and broadband metamaterial absorber based on lumped elements: design, characerization and experiment, Springer Appl. Phys. A, 117 (2014) 1915–1921.

    Article  ADS  Google Scholar 

  30. C. L. Holloway, M. A. Mohamed, E. F. Keuster, and A. Dienstfrey, Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles, IEEE Trans. Electromagn. Compat., 47 (2005) 853–865.

    Article  Google Scholar 

  31. D. Ye, Z.Wang, Z. Wang, K. Xu, B. Zhang, J. Hunagfu, C. Li, and L. Ran, Towards experimentally perfectly-matched layers with ultra thin metamaterial surfaces, IEEE Trans. Antennas Propag., 60 (2012) 5164–5172.

    Article  ADS  Google Scholar 

  32. K. R. Carver, and J. W. Mink, Microstrip antenna technology, IEEE Trans. Antennas Propag., 29 (1981) 2–24.

    Article  ADS  Google Scholar 

  33. J. S. Hong, Microstrip filters for RF/microwave applications, Wiley, Singapore, (2011), pp. 82–85.

    Book  Google Scholar 

  34. C. A. Balanis, Antenna theory: analysis and design, 2nd ed., Wiley, New Delhi, (2007), pp. 727–730.

    Google Scholar 

  35. S. Ghosh, and K. V. Srivastava, An equivalent circuit model of FSS based metamaterial absorber using coupled line theory, IEEE Antennas Wirel. Propag. Lett., 14 (2015) 511–514.

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The author wants to acknowledge Dr. Kumar Vaibhav Srivastava and Mr. Saptarshi Ghosh of Electrical Engineering Department, IIT Kanpur for their support to conduct experimental part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somak Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, S. A Broadband Microwave Metamaterial Absorber with Octave Bandwidth. MAPAN 31, 299–307 (2016). https://doi.org/10.1007/s12647-016-0180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-016-0180-6

Keywords

Navigation