Skip to main content

Advertisement

Log in

A Comparative In Vitro Study of the Neuroprotective Effect Induced by Cannabidiol, Cannabigerol, and Their Respective Acid Forms: Relevance of the 5-HT1A Receptors

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Previous preclinical studies have demonstrated that cannabidiol (CBD) and cannabigerol (CBG), two non-psychotomimetic phytocannabinoids from Cannabis sativa, induce neuroprotective effects on toxic and neurodegenerative processes. However, a comparative study of both compounds has not been reported so far, and the targets involved in this effect remain unknown. The ability of CBD and CBG to attenuate the neurotoxicity induced by two insults involving oxidative stress (hydrogen peroxide, H2O2) and mitochondrial dysfunction (rotenone) was evaluated in neural cell cultures. The involvement of CB-1 and CB-2 or 5-HT1A receptors was investigated. The neuroprotective effect of their respective acids forms, cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA), was also analyzed. MTT and immunocytochemistry assays were used to evaluate cell viability. No significant variation on cell viability was per se induced by the lower concentrations tested of CBD and CBG or CBDA and CBGA; however, high concentrations of CBD, CBDA, or CBGA were toxic since a 40–50% reduction of cell viability was observed. CBD and CBG showed neuroprotective effects against H2O2 or rotenone; however, both compounds were more effective in attenuating the rotenone-induced neurotoxicity. A high concentration of CBDA reduced the rotenone-induced neurotoxicity. WAY100635 (5-HT1A receptor antagonist) but not AM251 and AM630 (CB1 or CB2 receptor antagonists, respectively) significantly diminished the neuroprotective effect induced by CBG only against rotenone. Our results contribute to the understanding of the neuroprotective effect of CBD and CBG, showing differences with their acid forms, and also highlight the role of 5-HT1A receptors in the mechanisms of action of CBG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169

    PubMed  PubMed Central  CAS  Google Scholar 

  • Andre CM, Hausman JF, Guerriero G (2016) Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci 7:19

    PubMed  PubMed Central  Google Scholar 

  • Antonazzo M, Botta M, Bengoetxea H, Ruiz-Ortega JÁ, Morera-Herreras T (2019) Therapeutic potential of cannabinoids as neuroprotective agents for damaged cells conducing to movement disorders. Int Rev Neurobiol 146:229–257

    PubMed  CAS  Google Scholar 

  • Arredondo F, Echeverry C, Abin-Carriquiry JA, Blasina F, Antúnez K, Jones DP, Go YM, Liang YL, Dajas F (2010) After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radic Biol Med 49:738–747

    PubMed  CAS  Google Scholar 

  • Bezard E, Gerlach I, Moratalla R, Gross CE, Jork R (2006) 5-HT1A receptor agonist-mediated protection from MPTP toxicity in mouse and macaque models of Parkinson's disease. Neurobiol Dis 23:77–86

    PubMed  CAS  Google Scholar 

  • Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde D, Brandi I et al (2001) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134:845–852

    PubMed  PubMed Central  CAS  Google Scholar 

  • Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new animal models of Parkinson's disease. Biomed Biotechnol 2012:845618

    Google Scholar 

  • Calpe-López C, García-Pardo MP, Aguilar MA (2019) Cannabidiol treatment might promote resilience to cocaine and methamphetamine use disorders: a review of possible mechanisms. Molecules 16:24(14)

  • Campos AC, Guimarães FS (2008) Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats. Psychopharmacology 199(2):223–230

    PubMed  CAS  Google Scholar 

  • Campos AC, Fogaca MV, Sonego AB, Guimaraes FS (2016) Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol Res 112:119–127

    PubMed  CAS  Google Scholar 

  • Cassano T, Villani R, Pace L, Carbone A, Bukke VN, Orkisz S, Avolio C, Serviddio G (2020) From Cannabis sativa to Cannabidiol: promising therapeutic candidate for the treatment of neurodegenerative diseases. Front Pharmacol 11:124

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cui H, Kong Y, Zhang H (2012) Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012:1–13

    Google Scholar 

  • Dajas F, Rivera-Megret F, Blasina F, Arredondo F, Echeverry C et al (2003) Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotox Res 5:377–384

    Google Scholar 

  • Dajas F, Arredondo F, Echeverry C, Ferreira M, Morquio A, Rivera F (2005) Flavonoids and the brain: evidences and putative mechanisms for a protective capacity. Curr Neuropharmacol 3:193–206

    CAS  Google Scholar 

  • de Lau LM, Breteler MM (2006) Epidemiology of Parkinson's disease. Lancet Neurol 5:525–535

    PubMed  Google Scholar 

  • de Mello Schier AR, de Oliveira Ribeiro NP, Coutinho DS, Machado S, Arias-Carrión O et al (2014) Antidepressant-like and anxiolytic-like effects of cannabidiol: a chemical compound of Cannabis sativa. CNS Neurol Disord Drug Targets 13(6):953–960

    PubMed  Google Scholar 

  • Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    PubMed  CAS  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    PubMed  CAS  Google Scholar 

  • Di Marzo V, Piscitelli F (2015) The endocannabinoid system and its modulation by phytocannabinoids. Neurotherapeutics 12:692–698

    PubMed  PubMed Central  Google Scholar 

  • Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9:a028035

    PubMed  PubMed Central  Google Scholar 

  • Echeverry C, Arredondo F, Abin-Carriquiry JA, Midiwo JO, Ochieng C, Kerubo L, Dajas F (2010) Pretreatment with natural flavones and neuronal cell survival after oxidative stress: a structure-activity relationship study. J Agric Food Chem 58:2111–2115

    PubMed  CAS  Google Scholar 

  • Echeverry C, Reyes-Parada M, Scorza C (2020) "Cannabinoids and sleep: molecular, functional and clinical aspects book: chapter 1 "constituents of Cannabis sativa". Ed. Springer. In press

  • ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A (2017) Phytochemistry of Cannabis sativa L. Prog Chem Org Nat Prod 103:1–36

    PubMed  CAS  Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2008) Secondary metabolism in Cannabis. Phytochem Rev 7:615–639

    CAS  Google Scholar 

  • Franco R, Rivas-Santisteban R, Reyes-Resina I, Casanovas M, Pérez-Olives C, Ferreiro-Vera C, Navarro G, Sánchez de Medina V, Nadal X (2020) Pharmacological potential of varinic-, minor-, and acidic phytocannabinoids. Pharmacol Res 158:104801

    PubMed  CAS  Google Scholar 

  • García O, Massieu L (2001) Strategies for neuroprotection against L-trans-2,4-pyrrolidine dicarboxylate-induced neuronal damage during energy impairment in vitro. J Neurosci Res 64:418–428

    PubMed  Google Scholar 

  • Giacomo VD, Chiavaroli A, Recinella L, Orlando G, Cataldi A et al (2020a) Antioxidant and neuroprotective effects induced by cannabidiol and cannabigerol in rat CTX-TNA2 astrocytes and isolated cortexes. Int J Mol Sci 21(10):E3575

    PubMed  Google Scholar 

  • Giacomo VD, Chiavaroli A, Orlando G, Cataldi A, Rapino M et al (2020b) Neuroprotective and neuromodulatory effects induced by cannabidiol and cannabigerol in rat Hypo-E22 cells and isolated hypothalamus. Antioxidants (Basel) 9(1):71

    Google Scholar 

  • Giordano S, Lee J, Darley-Usmar VM, Zhang J (2012) Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death. PLoS One 7(9):e44610

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech 10:499–502

    PubMed  PubMed Central  CAS  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    PubMed  PubMed Central  CAS  Google Scholar 

  • Grundy R (2002) The therapeutic potential of the cannabinoids in neuroprotection. Expert Opin Investig Drugs 11:1365–1374

    PubMed  CAS  Google Scholar 

  • Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E, Dodel R, Ekman M, Faravelli C, Fratiglioni L, Gannon B, Jones DH, Jennum P, Jordanova A, Jönsson L, Karampampa K, Knapp M, Kobelt G, Kurth T, Lieb R, Linde M, Ljungcrantz C, Maercker A, Melin B, Moscarelli M, Musayev A, Norwood F, Preisig M, Pugliatti M, Rehm J, Salvador-Carulla L, Schlehofer B, Simon R, Steinhausen HC, Stovner LJ, Vallat JM, den Bergh PV, van Os J, Vos P, Xu W, Wittchen HU, Jönsson B, Olesen J, CDBE2010 Study Group (2011) Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21:718–779

    PubMed  CAS  Google Scholar 

  • Hacke ACM, Lima D, de Costa F, Deshmukh K, Li N, Chow AM, Marques JA, Pereira RP, Kerman K (2019) Probing the antioxidant activity of Δ9-tetrahydrocannabinol and cannabidiol in Cannabis sativa extracts. Analyst 144:4952–4961

    PubMed  CAS  Google Scholar 

  • Hayashi M (2009) Oxidative stress in developmental brain disorders. Neuropathology 29:1–8

    PubMed  Google Scholar 

  • Hill AJ, Williams CM, Whalley BJ, Stephens GJ (2012) Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther 133:79–97

    PubMed  CAS  Google Scholar 

  • Hind WH, England TJ, O'Sullivan SE (2016) Cannabidiol protects an in vitro model of the blood-brain barrier from oxygen-glucose deprivation via PPARγ and 5-HT1A receptors. Br J Pharmacol 173(5):815–825

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hybertson BM, Gao B, Bose SK, McCord JM (2011) Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Asp Med 32(4–6):234–246

    CAS  Google Scholar 

  • Iannotti FA, Di Marzo V, Petrosino S (2016) Endocannabinoids and endocannabinoid-related mediators: targets, metabolism and role in neurological disorders. Prog Lipid Res 62:107–128

    PubMed  CAS  Google Scholar 

  • Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 30:515–527

    PubMed  CAS  Google Scholar 

  • Jiang S, Fu Y, Williams J, Wood J, Pandarinathan L, Avraham S, Makriyannis A, Avraham S, Avraham HK (2007) Expression and function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid ligands in murine embryonic stem cells. PLoS One 2(7):e641

    PubMed  PubMed Central  Google Scholar 

  • Klein TW (2005) Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 5:400–411

    PubMed  CAS  Google Scholar 

  • Laprairie RB, Bagher AM, Kelly ME, Denovan-Wright EM (2015) Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 172:4790–4805

    PubMed  PubMed Central  CAS  Google Scholar 

  • Linge R, Jiménez-Sánchez L, Campa L, Pilar-Cuéllar F, Vidal R, Pazos A, Adell A, Díaz Á (2016) Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: role of 5-HT1A receptors. Neuropharmacology 103:16–26

    PubMed  CAS  Google Scholar 

  • Mahgoub M, Yang Keun-Hang S, Sydorenko V, Ashoor A, Kabbani N et al (2013) Effects of cannabidiol on the function of α7-nicotinic acetylcholine receptors. Eur J Pharmacol 720:310–319

    PubMed  CAS  Google Scholar 

  • Marsicano G, Moosmann B, Hermann H, Lutz B, Behl C (2002) Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1. J Neurochem 80:448–456

    PubMed  CAS  Google Scholar 

  • Martínez-Pinilla E, Varani K, Reyes-Resina I, Angelats E, Vincenzi F, Ferreiro-Vera C, Oyarzabal J, Canela EI, Lanciego JL, Nadal X, Navarro G, Borea PA, Franco R (2017) Binding and signaling studies disclose a potential allosteric site for cannabidiol in cannabinoid CB2 receptors. Front Pharmacol 8:744

    PubMed  PubMed Central  Google Scholar 

  • Mechoulam R, Parker LA, Gallily R (2002) Cannabidiol: an overview of some pharmacological aspects. J Clin Pharmacol 42:11S–19S

    PubMed  CAS  Google Scholar 

  • Mechoulam R, Sumariwalla PF, Feldmann M, Gallily R (2005) Cannabinoids in models of chronic inflammatory conditions. Phytochem Rev 4:11–18

    CAS  Google Scholar 

  • Mishima K, Hayakawa K, Abe K, Ikeda T, Egashira N, Iwasaki K et al (2005) Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. Stroke 36:1077–1082

    PubMed  Google Scholar 

  • Moldzio R, Pacher T, Krewenka C, Kranner B, Novak J et al (2012) Effects of cannabinoids Δ(9)-tetrahydrocannabinol, Δ(9)-tetrahydrocannabinolic acid and cannabidiol in MPP+ affected murine mesencephalic cultures. Phytomedicine 19(8-9):819–824

    PubMed  CAS  Google Scholar 

  • Mouhape C, Costa G, Ferreira M, Abin-Carriquiry JA, Dajas F, Prunell G (2019) Nicotine-induced neuroprotection in rotenone in vivo and in vitro models of Parkinson's disease: evidences for the involvement of the labile iron pool level as the underlying mechanism. Neurotox Res 35:71–82

    PubMed  CAS  Google Scholar 

  • Nadal X (2016) Methods of purifying cannabinoids, compositions and kits thereof. U.S. Patent No 9765000 Washington, DC: U.S. Patent and Trademark Office

  • Nadal X (2018) Methods of purifying cannabinoids using liquid:liquid chromatography. U.S. Patent No 102007199 Washington, DC: U.S. Patent and Trademark Office

  • Nadal X, Del Río C, Casano S, Palomares B, Ferreiro-Vera C et al (2017) Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity. Br J Pharmacol 174:4263–4276

    PubMed  PubMed Central  CAS  Google Scholar 

  • Navarro G, Varani K, Reyes-Resina I, Sánchez de Medina V, Rivas-Santisteban R, Sánchez-Carnerero Callado C, Vincenzi F, Casano S, Ferreiro-Vera C, Canela EI, Borea PA, Nadal X, Franco R (2018a) Cannabigerol action at cannabinoid CB1 and CB2 receptors and at CB1-CB2 heteroreceptor complexes. Front Pharmacol 9:632

    PubMed  PubMed Central  Google Scholar 

  • Navarro G, Reyes-Resina I, Rivas-Santisteban R, Sánchez de Medina V, Morales P, Casano S, Ferreiro-Vera C, Lillo A, Aguinaga D, Jagerovic N, Nadal X, Franco R (2018b) Cannabidiol skews biased agonism at cannabinoid CB1 and CB2 receptors with smaller effect in CB1-CB2 heteroreceptor complexes. Biochem Pharmacol 157:148–158

    PubMed  CAS  Google Scholar 

  • Navarro G, Varani K, Lillo A, Vincenzi F, Rivas-Santisteban R et al (2020) Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors. Pharmacol Res 26:104940

    Google Scholar 

  • O'Sullivan SE (2016) An update on PPAR activation by cannabinoids. Br J Pharmacol 173:1899–1910

    PubMed  PubMed Central  CAS  Google Scholar 

  • Passmore JB, Pinho S, Gomez-Lazaro M, Schrader M (2017) The respiratory chain inhibitor rotenone affects peroxisomal dynamics via its microtubule-destabilizing activity. Histochem Cell Biol 148:331–341

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pazos MR, Mohammed N, Lafuente H, Santos M, Martínez-Pinilla E, Moreno E, Valdizan E, Romero J, Pazos A, Franco R, Hillard CJ, Alvarez FJ, Martínez-Orgado J (2013) Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: role of 5HT(1A) and CB2 receptors. Neuropharmacology 71:282–291

    PubMed  CAS  Google Scholar 

  • Peres FF, Lima AC, Hallak JEC, Crippa JA, Silva RH, Abílio VC (2018) Cannabidiol as a promising strategy to treat and prevent movement disorders? Front Pharmacol 9:482

    PubMed  PubMed Central  Google Scholar 

  • Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta-9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215

    PubMed  CAS  Google Scholar 

  • Peruche B, Backhauss C, Prehn JH, Krieglstein J (1994) Protective effects of 5-HT1A agonists against neuronal damage demonstrated in vivo and in vitro. J Neural Transm Park Dis Dement Sect 8:73–83

    PubMed  CAS  Google Scholar 

  • Prieto JP, López Hill X, Urbanavicius J, Sánchez de Medina Baena V, Nadal X, et al. (2020) Cannabidiol prevents the expression of the locomotor sensitization and the metabolic changes in the nucleus accumbens and prefrontal cortex elicited by the combined administration of cocaine and caffeine in rats. Neurotox Res 38:478–486. https://doi.org/10.1007/s12640-020-00218-9

    Article  PubMed  CAS  Google Scholar 

  • Resstel LB, Tavares RF, Lisboa SF, Joca SR, Corrêa FM et al (2009) 5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. Br J Pharmacol 156:181–188

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rock EM, Bolognini D, Limebeer CL, Cascio MG, Anavi-Goffer S, Fletcher PJ, Mechoulam R, Pertwee RG, Parker LA (2012) Cannabidiol, a non-psychotropic component of cannabis, attenuates vomiting and nausea-like behaviour via indirect agonism of 5-HT1A somatodendritic autoreceptors in the dorsal raphe nucleus. Br J Pharmacol 165:2620–2634

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rodrigues da Silva N, Villela Gomes F, Buzolin Sonego A, Rodrigues da Silva N, Silveira Guimarães F (2020) Cannabidiol attenuates behavioral changes in a rodent model of schizophrenia through 5-HT1A, but not CB1 and CB2 receptors. Pharmacol Res 156:104749

    PubMed  CAS  Google Scholar 

  • Russo EB, Burnett A, Hall B, Parker KK (2005) Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res 30:1037–1043

    PubMed  CAS  Google Scholar 

  • Semkova I, Wolz P, Krieglstein J (1998) Neuroprotective effect of 5-HT1A receptor agonist, Bay×3702, demonstrated in vitro and in vivo. Eur J Pharmacol 359:251–260

    PubMed  CAS  Google Scholar 

  • Sonego AB, Gomes FV, Del Bel EA, Guimaraes FS (2016) Cannabidiol attenuates haloperidol-induced catalepsy and c-Fos protein expression in the dorsolateral striatum via 5-HT1A receptors in mice. Behav Brain Res 309:22–28

    PubMed  CAS  Google Scholar 

  • Sun Y, Bennett A (2007) Cannabinoids: a new group of agonists of PPARs. PPAR Res 2007:23513

    PubMed  PubMed Central  Google Scholar 

  • Swarnkar S, Singh S, Goswami P, Mathur R, Patro IK, Nath C (2012) Astrocyte activation: a key step in rotenone induced cytotoxicity and DNA damage. Neurochem Res 37(10):2178–2189

    PubMed  CAS  Google Scholar 

  • Teleanu RI, Chircov C, Grumezescu AM, Volceanov A, Teleanu DM (2019) Antioxidant therapies for neuroprotection-a review. J Clin Med 8:1659

    PubMed Central  CAS  Google Scholar 

  • Thomas BF, Gilliam AF, Burch DF, Roche MJ, Seltzman HH (1998) Comparative receptor binding analyses of cannabinoid agonists and antagonists. J Pharmacol Exp Ther 285:285–292

    PubMed  CAS  Google Scholar 

  • Toth M (2003) 5-HT1A receptor knockout mouse as a genetic model of anxiety. Eur J Pharmacol 463:177–184

    PubMed  CAS  Google Scholar 

  • Valdeolivas S, Navarrete C, Cantarero I, Bellido ML, Muñoz E, Sagredo O (2015) Neuroprotective properties of cannabigerol in Huntington’s disease: studies in R6/2 mice and 3-nitropropionate-lesioned mice. Neurotherapeutics 12:185–199

    PubMed  CAS  Google Scholar 

  • Veal E, Day A (2011) Hydrogen peroxide as a signaling molecule. Antioxid Redox Signal 1:147–151

    Google Scholar 

  • Wu YN, Johnson SW (2007) Rotenone potentiates NMDA currents in substantia nigra dopamine neurons. Neurosci Lett 421:96–100

    PubMed  CAS  Google Scholar 

  • Xu Q, Konta T, Nakayama K, Furusu A, Moreno-Manzano V, Lucio-Cazana J, Ishikawa Y, Fine LG, Yao J, Kitamura M (2004) Cellular defense against H2O2-induced apoptosis via MAP kinase-MKP-1 pathway. Free Radic Biol Med 36:985–993

    PubMed  CAS  Google Scholar 

  • Yu Y-X, Li Y-P, Gao F, Hu Q-S, Zhang Y, Chen D, Wang GH (2016) Vitamin K2 suppresses rotenone-induced microglial activation in vitro. Acta Pharmacol Sin 37(9):1178–1189

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zanelati TV, Biojone C, Moreira FA, Guimarães FS, Joca SR (2010) Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors. Br J Pharmacol 159(1):122–128

    PubMed  CAS  Google Scholar 

  • Zuardi AW, Rodrigues JA, Cunha JM (1991) Effects of cannabidiol in animal models predictive of antipsychotic activity. Psychopharmacology 104:260–264

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Raquel Peyraube for her remarkable help in the Cannabis field, and we thank Analía Richeri PhD for her technical support. This study has a license from IRCCA, Uruguay.

Funding

This study was partially supported by Premio Concursable Junta Nacional de Drogas (Uruguay), PEDECIBA (Uruguay), and FONDECYT-CHILE Grant 1170662.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Echeverry.

Ethics declarations

Conflict of Interest

Cannabinoids used were donated by Pyhtoplant Research (Spain). Verónica Sánchez de Medina works for Phytoplant Research S.L., and Xavier Nadal is a former employee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echeverry, C., Prunell, G., Narbondo, C. et al. A Comparative In Vitro Study of the Neuroprotective Effect Induced by Cannabidiol, Cannabigerol, and Their Respective Acid Forms: Relevance of the 5-HT1A Receptors. Neurotox Res 39, 335–348 (2021). https://doi.org/10.1007/s12640-020-00277-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00277-y

Keywords

Navigation