Skip to main content
Log in

Modulation of Benzo[a]Pyrene Induced Anxiolytic-Like Behavior by Retinoic Acid in Zebrafish: Involvement of Oxidative Stress and Antioxidant Defense System

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Benzo[a]pyrene (B[a]P) is commonly associated with oxidative stress-induced neurotoxicity. Retinoic acid (RA) has been shown to exhibit neuroprotection in brain, and disruption of RA signaling via excess or deficient RA can lead to oxidative stress. B[a]P contamination in aquatic environment has been shown to lower the internal RA level. Thus, the present study was conducted in wild-type zebrafish to ameliorate the neurotoxic effect of B[a]P by waterborne RA co-supplementation. Findings showed that B[a]P induced anxiolytic-like behavioral response, and altered antioxidant activity in zebrafish is attenuated by RA. Our study also advocated the neurotoxic potential of RA treatment alone in control condition. Previous findings showed that periventricular gray zone (PGZ) of optic tectum (TeO) in zebrafish brain regulates anxiety-like behavior. The augmented pyknotic neuronal counts in PGZ following B[a]P treatment was ameliorated by RA co-supplementation. Further, presence of B[a]P in the cell milieu is known to induce oxidative stress through increase expression of cytochrome P450 1A1 (CYP1A1), an enzyme necessary for metabolic breakdown of both B[a]P and RA. Any deviation from the required concentration of RA leads to production of reactive oxygen species. Further, low availability of RA in cell milieu is known to decrease the expression of Nrf2, a transcription factor necessary for the expression of several antioxidants and antioxidant enzymes. Recent studies also showed that RA increases glutathione synthesis and exhibits neuroprotective properties in brain cells. The findings of the present study address the potential role of exogenous RA co-supplementation as a therapeutic intervention against B[a]P-induced depletion of RA, causing neurotoxicity in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahlemeyer B, Bauerbach E, Plath M, Steuber M, Heers C, Tegtmeier F, Krieglstein J (2001) Retinoic acid reduces apoptosis and oxidative stress by preservation of SOD protein level. Free Radic Biol Med 30:1067–1077

    Article  CAS  PubMed  Google Scholar 

  • Alsop D, Brown S, Van Der Kraak G (2007) The effects of copper and benzo[a]pyrene on retinoids and reproduction in zebrafish. Aquat Toxicol 82:281–295

    Article  CAS  PubMed  Google Scholar 

  • Arzuaga X, Wassenberg D, Di Giulio R, Elskus A (2006) The chlorinated AHR ligand 3,3,4,4,5-pentachlorobiphenyl (PCB126) promotes reactive oxygen species (ROS) production during embryonic development in the killifish (Fundulus heteroclitus). Aquat Toxicol 76:13–23

    Article  CAS  PubMed  Google Scholar 

  • Ayyappan P, Palayyan SR, Kozhiparambil Gopalan R (2016) Attenuation of oxidative damage by Boerhaavia diffusa L. against different neurotoxic agents in rat brain homogenate. J Diet Suppl 13:300–312

    Article  CAS  PubMed  Google Scholar 

  • Bailey JM, Oliveri AN, Karbhari N, Brooks RA, De La Rocha AJ, Janardhan S, Levin ED (2016) Persistent behavioral effects following early life exposure to retinoic acid or valproic acid in zebrafish. Neurotoxicology 52:23–33

    Article  CAS  PubMed  Google Scholar 

  • Barranco A, Escudero L, Sanz Landaluze J, Rainieri S (2016) Detection of exposure effects of mixtures of heavy polycyclic aromatic hydrocarbons in zebrafish embryos. J Appl Toxicol. doi:10.1002/jat.3353

    PubMed  Google Scholar 

  • Bault ZA, Peterson SM, Freeman JL (2015) Directional and color preference in adult zebrafish: implications in behavioral and learning assays in neurotoxicology studies. J Appl Toxicol 35:1502–1510

    Article  CAS  PubMed  Google Scholar 

  • Bencan Z, Sledge D, Levin ED (2009) Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav 94:75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berntssen MH, Ørnsrud R, Rasinger J, Søfteland L, Lock EJ, Kolås K, Moren M, Hylland K, Silva J, Johansen J, Lie K (2016) Dietary vitamin a supplementation ameliorates the effects of poly-aromatic hydrocarbons in Atlantic salmon (Salmo salar). Aquat Toxicol 175:171–183

    Article  CAS  PubMed  Google Scholar 

  • Blaser RE, Penalosa YM (2011) Stimuli affecting zebrafish (Daniorerio) behavior in the light/dark preference test. Physiol Behav 104:831–837

    Article  CAS  PubMed  Google Scholar 

  • Blaser RE, Chadwick L, McGinnis GC (2010) Behavioral measures of anxiety in zebrafish (Danio rerio). Behav Brain Res 208:56–62

    Article  CAS  PubMed  Google Scholar 

  • Bouayed J, Rammal H, Soulimani R (2009) Oxidative stress and anxiety: relationship and cellular pathways. Oxidative Med Cell Longev 2:63–67

    Article  Google Scholar 

  • Chakrabarti M, McDonald AJ, Will Reed J, Moss MA, Das BC, Ray SK (2015) Molecular signaling mechanisms of natural and synthetic retinoids for inhibition of pathogenesis in Alzheimer's disease. J Alzheimers Dis 50:335–352

    Article  PubMed Central  Google Scholar 

  • Chang JT, Lehtinen MK, Sive H (2016) Zebrafish cerebrospinal fluid mediates cell survival through a retinoid signaling pathway. Dev Neurobiol 76:75–92

    Article  CAS  PubMed  Google Scholar 

  • Crockett S, Clarke M, Reeves S, Sims B (2011) Cystine glutamate exchanger upregulation by retinoic acid induces neuroprotection in neural stem cells. Neuroreport 22:598–602

    Article  CAS  PubMed  Google Scholar 

  • Dal Santo G, Conterato GM, Barcellos LJ, Rosemberg DB, Piato AL (2014) Acute restraint stress induces an imbalance in the oxidative status of the zebrafish brain. Neurosci Lett 558:103–108

    Article  CAS  PubMed  Google Scholar 

  • Das, S.K., Patri, M., 2016. Neuropeptide Y expression confers benzo[a]pyrene induced anxiolytic like behavioral response during early adolescence period of male Wistar rats. Neuropeptides. pii: S0143-4179(16)30069-5. doi: 10.1016/j.npep.2016.07.001.

  • Das SK, Patel B, Patri M (2016) Neurotoxic effect of benzo[a]pyrene and its possible association with 6-Hydroxydopamine induced neurobehavioral changes during early adolescence period in rats. J Toxicol 2016:8606410

    PubMed  PubMed Central  Google Scholar 

  • De Luca LM (1991) Retinoids and their receptors in differentiation, embryogenesis, and neoplasia. FASEB J 5:2924–2933

    CAS  PubMed  Google Scholar 

  • Fonzo LS, Golini RS, Delgado SM, Ponce IT, Bonomi MR, Rezza IG, Gimenez MS, Anzulovich AC (2009) Temporal patterns of lipoperoxidation and antioxidant enzymes are modified in the hippocampus of vitamin A-deficient rats. Hippocampus 19:869–880

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Wu M, Wang C, Wang Y, Zuo Z (2015) Chronic exposure to low benzo[a]pyrene level causes neurodegenerative disease-like syndromes in zebrafish (Danio rerio). Aquat Toxicol 167:200–208

    Article  CAS  PubMed  Google Scholar 

  • Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, Wong K, Elegante M, Elkhayat S, Tan J, Gilder T, Wu N, Dileo J, Cachat J, Kalueff AV (2010) Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 214:277–284

    Article  CAS  PubMed  Google Scholar 

  • Guo W, He M, Yang Z, Lin C, Quan X, Wang H (2007) Distribution of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed. China Chemosphere 68:93–104

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, Chanas SA, Henderson CJ, Mc Mahon M, Sun C, Moffat GJ, Wolf CR, Yamamoto M (2000) The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochem Soc Trans 28:33–41

    Article  CAS  PubMed  Google Scholar 

  • Holder N, Hill J (1991) Retinoic acid modifies development of the midbrain-hindbrain border and affects cranial ganglion formation in zebrafish embryos. Development 113:1159–1170

    CAS  PubMed  Google Scholar 

  • Hsu CH, Wen ZH, Lin CS, Chakraborty C (2007) The zebrafish model: use in studying cellular mechanisms for a spectrum of clinical disease entities. Curr Neurovasc Res 4:111–120

    Article  CAS  PubMed  Google Scholar 

  • Huang FJ, Hsuuw YD, Lan KC, Kang HY, Chang SY, Hsu YC, Huang KE (2006) Adverse effects of retinoic acid on embryo development and the selective expression of retinoic acid receptors in mouse blastocysts. Hum Reprod 21:202–209

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Welty SE, Couroucli XI, Barrios R, Kondraganti SR, Muthiah K, Yu L, Avery SE, Moorthy B (2004) Disruption of the ah receptor gene alters the susceptibility of mice to oxygen-mediated regulation of pulmonary and hepatic cytochromes P4501A expression and exacerbates hyperoxic lung injury. J Pharmacol Exp Ther 310:512–519

    Article  CAS  PubMed  Google Scholar 

  • Kelly KA, Havrilla CM, Brady TC, Abramo KH, Levin ED (1998) Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perspect 106:375–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knecht AL, Truong L, Simonich MT, Tanguay RL (2016) Developmental benzo[a]pyrene (B[a]P) exposure impacts larval behavior and impairs adult learning in zebrafish. Neurotoxicol Teratol. doi:10.1016/j.ntt.2016.10.006

    PubMed  Google Scholar 

  • Kochhar DM, Jiang H, Penner JD, Beard RL, Chandraratna AS (1996) Differential teratogenic response of mouse embryos to receptor selective analogs of retinoic acid. Chem Biol Interact 100:1–12

    Article  CAS  PubMed  Google Scholar 

  • Lampen A, Meyer S, Arnhold T, Nau H (2000) Metabolism of vitamin a and its active metabolite all-trans-retinoic acid in small intestinal enterocytes. J Pharmacol Exp Ther 295:979–985

    CAS  PubMed  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  • Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8:755–765

    Article  CAS  PubMed  Google Scholar 

  • Maskaoui K, Zhou JL, Hong HS, Zhang ZL (2002) Contamination by polycyclicaromatic hydro-carbons in the Jiulong River Estuary and Western Xiamen Sea. China Environ Pollut 118:109–122

    Article  CAS  PubMed  Google Scholar 

  • Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A Jr (2010a) Measuring anxiety in zebrafish: a critical review. Behav Brain Res 214:157–171

    Article  PubMed  Google Scholar 

  • Maximino C, Marques de Brito T, Dias CA, Gouveia A Jr, Morato S (2010b) Scototaxis as anxiety-like behavior in fish. Nat Protoc 5:209–216

    Article  CAS  PubMed  Google Scholar 

  • McCaffery PJ, Adams J, Maden M, Rosa-Molinar E (2003) Too much of a good thing: retinoic acid as an endogenous regulator of neural differentiation and exogenous teratogen. Eur J Neurosci 18:457–472

    Article  CAS  PubMed  Google Scholar 

  • Miller SM, Moore MJ, Massey V, Williams CH Jr, Distefano MD, Ballou DP, Walsh CT (1989) Evidence for the participation of Cys558 and Cys559 at the active site of mercuric reductase. Biochemistry 28:1194–1205

    Article  CAS  PubMed  Google Scholar 

  • Mohanty R, Das SK, Singh NR, Patri M (2016) Withania Somnifera leaf extract ameliorates benzo[a]pyrene-induced behavioral and neuromorphological alterations by improving brain antioxidant status in zebrafish (Danio rerio). Zebrafish 13:188–196

    Article  CAS  PubMed  Google Scholar 

  • Mos L, Tabuchi M, Dangerfield N, Jeffries SJ, Koop BF, Ross PS (2007) Contaminant-associated disruption of vitamin a and its receptor (retinoic acid receptor alpha) in free-ranging harbour seals (Phoca vitulina). Aquat Toxicol 81:319–328

    Article  CAS  PubMed  Google Scholar 

  • Motelay-Massei A, Ollivon D, Garban B, Tiphagne-Larcher K, Zimmerlin I, Chevreuil M (2007) PAHs in the bulk atmospheric deposition of the Seine river basin: source identification and apportionment by ratios, multivariate statistical techniques and scanning electron microscopy. Chemosphere 67:312–321

    Article  CAS  PubMed  Google Scholar 

  • Moussavi Nik SH, Croft K, Mori TA, Lardelli M (2014) The comparison of methods for measuring oxidative stress in zebrafish brains. Zebrafish 11:248–254

    Article  CAS  PubMed  Google Scholar 

  • Nguyen PM, Park MS, Chow M, Chang JH, Wrischnik L, Chan WK (2010) Benzo[a]pyrene increases the Nrf2 content by downregulating the Keap1 message. Toxicol Sci 116:549–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novák J, Benísek M, Hilscherová K (2008) Disruption of retinoid transport, metabolism and signaling by environmental pollutants. Environ Int 34:898–913

    Article  PubMed  Google Scholar 

  • OECD, 1992. OECD guideline for the testing of chemicals. Test no. 203. Fish, acute toxicity test. Organization for Economic Cooperation and Development, Paris, France

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Pabst MJ, Habig WH, Jakoby WB (1974) Glutathione S-transferase A: a novel kinetic mechanism in which the major reaction pathway depends on substrate concentration. J Biol Chem 249:7140–7147

    CAS  PubMed  Google Scholar 

  • Patel B, Das SK, Patri M (2016a) Neonatal benzo[a]pyrene exposure induces oxidative stress and DNA damage causing neurobehavioural changes during the early adolescence period in rats. Dev Neurosci 38:150–162

    Article  CAS  PubMed  Google Scholar 

  • Patel B, Das SK, Das S, Das L, Patri M (2016b) Neonatal exposure to benzo[a]pyrene induces oxidative stress causing altered hippocampal cytomorphometry and behavior during early adolescence period of male Wistar rats. Int J Dev Neurosci 50:7–15

    Article  CAS  PubMed  Google Scholar 

  • Patri M, Padmini A, Babu PP (2009) Polycyclic aromatic hydrocarbons in air and their neurotoxic potency in association with oxidative stress: a brief perspective. Annals Neurosciecnce 16:22–30

    Article  CAS  Google Scholar 

  • Ramya D, Siddikuzzaman M,A, Berlin Grace VM (2012) Chemoprotective effect of all-trans retinoic acid (ATRA) on oxidative stress and lung metastasis induced by benzo(a)pyrene. Immunopharmacol Immunotoxicol 34:317–325

    Article  CAS  PubMed  Google Scholar 

  • Rao J, Zhang C, Wang P, Lu L, Zhang F (2010) All-trans retinoic acid alleviates hepatic ischemia/reperfusion injury by enhancing manganese superoxide dismutase in rats. Biol Pharm Bull 33:869–875

    Article  CAS  PubMed  Google Scholar 

  • Reiner DJ, Yu SJ, Shen H, He Y, Bae E, Wang Y (2014) 9-Cis retinoic acid protects against methamphetamine-induced neurotoxicity in nigrostriatal dopamine neurons. Neurotox Res 25:248–261

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S (2014) Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: expression of antioxidant genes. Ecotoxicol Environ Saf 107:1–8

    Article  CAS  PubMed  Google Scholar 

  • Saunders CR, Shockley DC, Knuckles ME (2001) Behavioral effects induced by acute exposure to benzo(a)pyrene in F-344 rats. Neurotox Res 3:557–579

    Article  CAS  PubMed  Google Scholar 

  • Saunders CR, Das SK, Ramesh A, Shockley DC, Mukherjee S (2006) Benzo(a)pyrene-induced acute neurotoxicity in the F-344 rat: role of oxidative stress. J Appl Toxicol 26:427–438

    Article  CAS  PubMed  Google Scholar 

  • Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    Article  CAS  PubMed  Google Scholar 

  • Sidorova YA, Perepechaeva ML, Pivovarova EN, Markel AL, Lyakhovich VV, Grishanova AY (2016) Menadione suppresses benzo(α)pyrene-induced activation of cytochromes P450 1A: insights into a possible molecular mechanism. PLoS One 11:e0155135

    Article  PubMed  PubMed Central  Google Scholar 

  • Signorile A, Sardaro N, De Rasmo D, Scacco S, Papa F, Borracci P, Carratù MR, Papa S (2011) Rat embryo exposure to all-trans retinoic acid results in postnatal oxidative damage of respiratory complex I in the cerebellum. Mol Pharmacol 80:704–713

    Article  CAS  PubMed  Google Scholar 

  • Tan KP, Kosuge K, Yang M, Ito S (2008) NRF2 as a determinant of cellular resistance in retinoic acid cytotoxicity. Free Radic Biol Med 45:1663–1673

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Zheng TL, Wang XH (2004) Concentration, distribution and source of polycyclic aromatic hydrocarbons in surface sediments of Xiamen western harbor. Oceanol Limnol Sin 35:15–20

    CAS  Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  PubMed  Google Scholar 

  • Vignet C, Devier MH, Le Menach K, Lyphout L, Potier J, Cachot J (2014) Long-term disruption of growth, reproduction, and behavior after embryonic exposure of zebrafish to PAH-spiked sediment. Environ Sci Pollut Res Int 21:13877–13887

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Hayes JD, Henderson CJ, Wolf CR (2007) Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proceedings of the National Academy of Sciences 104(49):19589–19594

  • Wang Y, Chen J, Du C, Li C, Huang C, Dong Q (2014) Characterization of retinoic acid-induced neurobehavioral effects in developing zebrafish. Environ Toxicol Chem 33:431–437

    Article  CAS  PubMed  Google Scholar 

  • Winston GW (1991) Oxidants and antioxidants in aquatic animals. Comp Biochem Physiol C 100:173–176

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Lv B, Zha J, Wang Z, Wang W, Li W (2013) New cytochrome P450 1B1, 1C1, 2Aa, 2Y3, and 2K genes from Chinese rare minnow (Gobiocypris rarus): molecular characterization, basal expression and response of rare minnow CYP1s and CYP2s mRNA exposed to the AHR agonist benzo[a]pyrene. Chemosphere 93:209–216

    Article  CAS  PubMed  Google Scholar 

  • Zhang MA, Chen FH, Huang ZY, Zhang XC (2011) Elaidic acid enhanced the simultaneous neurotoxicity attributable to the cerebral pathological lesion resulted from oxidative damages induced by acrylamide and benzo(a)pyrene. Toxicol Ind Health 27:661–672

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the financial support provided by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Government of India (sanctioned no. 37(1)/14/27/2015/BRNS). The authors also acknowledged the financial support provided by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (sanctioned no. PDF/2015/000573). The authors also acknowledge the contribution of Mr. Ritendra Mishra, DIHAR, DRDO, who helped in copy editing and proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manorama Patri.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, R., Das, S.K. & Patri, M. Modulation of Benzo[a]Pyrene Induced Anxiolytic-Like Behavior by Retinoic Acid in Zebrafish: Involvement of Oxidative Stress and Antioxidant Defense System. Neurotox Res 31, 493–504 (2017). https://doi.org/10.1007/s12640-016-9694-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9694-5

Keywords

Navigation