Skip to main content
Log in

Minocycline Prevents Morphine-Induced Apoptosis in Rat Cerebral Cortex and Lumbar Spinal Cord: A Possible Mechanism for Attenuating Morphine Tolerance

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Tolerance to the chronic administration of opioids such as morphine reduces the utility of these drugs in pain management. Despite significant investigation, the precise cellular mechanisms underlying opioid tolerance and dependence remain elusive. It has been indicated that tolerance to the analgesic effect of morphine is associated with apoptosis in the central nervous system. The aim of this study was to examine the effects of the intracerebroventricular (icv) administration of minocycline (a second-generation tetracycline) on morphine-induced apoptosis in the cerebral cortex and lumbar spinal cord of rats after morphine-induced tolerance. Different groups of rats received either morphine (ip) and distilled water (icv) or morphine and different doses of minocycline (icv) or minocycline alone once per day. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) method was used to analyze apoptosis. The anti-apoptotic factors, Bcl-2 and HSP 70 and the pro-apoptotic element caspase-3 were evaluated by immunoblotting. The results indicated that minocycline attenuated the number of apoptotic cells in both the cerebral cortex and lumbar spinal cord. Immunoblotting findings showed that the amounts of anti-apoptotic agents (Bcl-2 and HSP 70) were greater in the treatment groups than in the controls in both regions. Although minocycline did not change the level of caspase-3 at the doses used with morphine but the minocycline treated rats showed a significantly lower increase in caspase-3 activity than did in the control. In conclusion, minocycline decreased the number of TUNEL-positive cells and increased the amount of anti-apoptotic factors (Bcl-2 and HSP 70), but did not change the caspase-3 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bellmann K, Jaattela M, Wissing D, Burkart V, Kolb H (1996) Heat shock protein hsp70 overexpression confers resistance against nitric oxide. FEBS Lett 391:185–188

    Article  PubMed  CAS  Google Scholar 

  • Boronat MA, Garcia-Fuster MJ, Garcia-Sevilla JA (2001) Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain. Br J Pharmacol 134:1263–1270

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Cui J, Zhang Y, Yu LC (2008) Prolonged morphine application modulates Bax and Hsp70 levels in primary rat neurons. Neurosci Lett 441:311–314

    Article  PubMed  CAS  Google Scholar 

  • Cho KO, La HO, Cho YJ, Sung KW, Kim SY (2006) Minocycline attenuates white matter damage in a rat model of chronic cerebral hypoperfusion. J Neurosci Res 83:285–291

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Kim HS, Shin KY, Kim EM, Kim M, Kim HS, Park CH, Jeong YH, Yoo J, Lee JP, Chang KA, Kim S, Suh YH (2007) Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacology 32:2393–2404

    Article  PubMed  CAS  Google Scholar 

  • Domercq M, Matute C (2004) Neuroprotection by tetracyclines. Trends Pharmacol Sci 25:609–612

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez JC, Egea J, Del Carmen Godino M, Fernandez-Gomez FJ, Sanchez-Prieto J, Gandia L, Garcia AG, Jordan J, Hernandez-Guijo JM (2007) Neuroprotectant minocycline depresses glutamatergic neurotransmission and Ca(2+) signalling in hippocampal neurons. Eur J Neurosci 26:2481–2495

    Article  PubMed  Google Scholar 

  • Gordon SA, Hoffman RA, Simmons RL, Ford HR (1997) Induction of heat shock protein 70 protects thymocytes against radiation-induced apoptosis. Arch Surg 132:1277–1282

    PubMed  CAS  Google Scholar 

  • Habibi-Asl B, Alimohammadi B, Charkhpour M, Hassanzadeh K (2009a) Evaluation the effects of systemic administration of minocycline and riluzole on tolerance to morphine analgesic effect in rat. Pharm Sci (J Fac Pharm, Tabriz Univ Med Sci) 15:205–212

    CAS  Google Scholar 

  • Habibi-Asl B, Hassanzadeh K, Charkhpour M (2009b) Central administration of minocycline and riluzole prevents morphine-induced tolerance in rats. Anesth Analg 109:936–942

    Article  PubMed  CAS  Google Scholar 

  • Hassanzadeh K, Habibi-asl B, Roshangar L, Nemati M, Ansarin M, Farajnia S (2010) Intracerebroventricular administration of riluzole prevents morphine-induced apoptosis in the rat lumbar spinal cord. Pharmacol Rep 62(4):664–673

    PubMed  CAS  Google Scholar 

  • Heo K, Cho YJ, Cho KJ, Kim HW, Kim HJ, Shin HY, Lee BI, Kim GW (2006) Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice. Neurosci Lett 398:195–200

    Article  PubMed  CAS  Google Scholar 

  • Inturrisi CE (1997) Preclinical evidence for a role of glutamatergic systems in opioid tolerance and dependence. Semin Neurosci 9:110–119

    Article  CAS  Google Scholar 

  • Johnston IN, Milligan ED, Wieseler-Frank J, Frank MG, Zapata V, Campisi J, Langer S, Martin D, Green P, Fleshner M, Leinwand L, Maier SF, Watkins LR (2004) A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J Neurosci 24:7353–7565

    Article  PubMed  CAS  Google Scholar 

  • Kraus RL, Pasieczny R, Lariosa-Willingham K, Turner MS, Jiang A, Trauger JW (2005) Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J Neurochem 94:819–827

    Article  PubMed  CAS  Google Scholar 

  • Li CY, Lee JS, Ko YG, Kim JI, Seo JS (2000) Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275:25665–25671

    Article  PubMed  CAS  Google Scholar 

  • Mao J (1999) NMDA and opioid receptors: their interactions in antinociception, tolerance and neuroplasticity. Brain Res Brain Res Rev 30:289–304

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Price DD, Zhu J, Lu J, Mayer DJ (1997) The inhibition of nitric oxide-activated poly(ADP-ribose) synthetase attenuates transsynaptic alteration of spinal cord dorsal horn neurons and neuropathic pain in the rat. Pain 72:355–366

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Sung B, Ji RR, Lim G (2002) Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism. J Neurosci 22:7650–7661

    PubMed  CAS  Google Scholar 

  • Mika J, Wawrzczak-Bargiela A, Osikowicz M, Makuch W, Przewlocka B (2009) Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice. Brain Behav Immun 23:75–84

    Article  PubMed  CAS  Google Scholar 

  • Morimoto N, Shimazawa M, Yamashima T, Nagai H, Hara H (2005) Minocycline inhibits oxidative stress and decreases in vitro and in vivo ischemic neuronal damage. Brain Res 1044:8–15

    Article  PubMed  CAS  Google Scholar 

  • Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B (1997) Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 17:5317–5327

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, London

    Google Scholar 

  • Popovic N, Schubart A, Goetz BD, Zhang SC, Linington C, Duncan ID (2002) Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 51:215–223

    Article  PubMed  CAS  Google Scholar 

  • Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic—ischemic brain damage. Ann Neurol 19:105–111

    Article  PubMed  CAS  Google Scholar 

  • Sadowski T, Steinmeyer J (2001) Minocycline inhibits the production of inducible nitric oxide synthase in articular chondrocytes. J Rheumatol 28:336–340

    PubMed  CAS  Google Scholar 

  • Salinska E, Danysz W, Lazarewicz JW (2005) The role of excitotoxicity in neurodegeneration. Folia Neuropathol 43:322–339

    PubMed  CAS  Google Scholar 

  • Sanchez Mejia RO, Ona VO, Li M, Friedlander RM (2001) Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery 48:1393–1399 (discussion 1399–1401)

    Article  PubMed  CAS  Google Scholar 

  • Singhal PC, Sharma P, Kapasi AA, Reddy K, Franki N, Gibbons N (1998) Morphine enhances macrophage apoptosis. J Immunol 160:1886–1893

    PubMed  CAS  Google Scholar 

  • Singhal PC, Kapasi AA, Reddy K, Franki N, Gibbons N, Ding G (1999) Morphine promotes apoptosis in Jurkat cells. J Leukoc Biol 66:650–658

    PubMed  CAS  Google Scholar 

  • Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24:2182–2190

    Article  PubMed  CAS  Google Scholar 

  • Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W (2005) Minocycline as a neuroprotective agent. Neuroscientist 11:308–322

    Article  PubMed  CAS  Google Scholar 

  • Tikka TM, Koistinaho JE (2001) Minocycline provides neuroprotection against N-methyl-d-aspartate neurotoxicity by inhibiting microglia. J Immunol 166:7527–7533

    PubMed  CAS  Google Scholar 

  • Wang X, Zhu S, Drozda M, Zhang W, Stavrovskaya IG, Cattaneo E, Ferrante RJ, Kristal BS, Friedlander RM (2003) Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Natl Acad Sci USA 100:10483–10487

    Article  PubMed  CAS  Google Scholar 

  • Whiteside GT, Munglani R (2001) Cell death in the superficial dorsal horn in a model of neuropathic pain. J Neurosci Res 64:168–173

    Article  PubMed  CAS  Google Scholar 

  • Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    PubMed  CAS  Google Scholar 

  • Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96:13496–13500

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC, Gullans S, Ferrante RJ, Przedborski S et al (2002) Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417:74–78

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Drug Applied Research Center of Tabriz University of Medical Sciences grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kambiz Hassanzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassanzadeh, K., Habibi-asl, B., Farajnia, S. et al. Minocycline Prevents Morphine-Induced Apoptosis in Rat Cerebral Cortex and Lumbar Spinal Cord: A Possible Mechanism for Attenuating Morphine Tolerance. Neurotox Res 19, 649–659 (2011). https://doi.org/10.1007/s12640-010-9212-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9212-0

Keywords

Navigation